PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 1 | 1-6
Article title

Discrete angle rotations of Bi nanoparticles embedded in a Ga matrix

Content
Title variants
Languages of publication
EN
Abstracts
EN
Spontaneous instabilities of nanoparticles are known to be influenced by the temperature, and strongly depend on the particle size. However, it is not clear what is the role of the surrounding material that is in contact with the particle. Here we report on the difference between spontaneous rotations of Bi nanoparticles embedded in amorphous SiO and those embedded in liquid Ga. The phenomenon was studied quantitatively by time resolved transmission electron microscopy using Fourier Transform analysis of highresolution electron microscopy images. While rotations of Bi nanoparticles embedded in amorphous SiO occur by all angles, the rotations of Bi nanoparticles embedded in liquid Ga occur by discrete angles. Our results point quantitatively, for the first time, to the role and importance of the contacting surrounding surface during the rotation of nanoparticles.
Contributors
  • Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel, beerav@gmail.com
  • Laboratoire de Physique de la Matiere Condensee, Unite Associee au CNRS 6622, Universite de Nice, Parc Valrose, 06108, Nice Cedex 2, France
author
  • Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
References
  • [1] S. Iijima, T Ichihashi, Phys. Rev. Lett. 56, 616 (1986) http://dx.doi.org/10.1103/PhysRevLett.56.616[Crossref]
  • [2] P. M. Ajayan, L. D. Marks, Phys. Rev. Lett. 63, 279 (1989) http://dx.doi.org/10.1103/PhysRevLett.63.279[Crossref]
  • [3] T. Ben David et al., Phys. Rev. Lett. 78, 2585 (1997) http://dx.doi.org/10.1103/PhysRevLett.78.2585[Crossref]
  • [4] L. D. Marks, Rep. Prog. Phys. 57, 603 (1994) http://dx.doi.org/10.1088/0034-4885/57/6/002[Crossref]
  • [5] P. Williams, Appl. Phys. Lett. 50, 1760 (1987) http://dx.doi.org/10.1063/1.97739[Crossref]
  • [6] W. Krakow, M. Jose-Yacaman, J. L. Aragon, Phys. Rev. B 49, 10591 (1994) http://dx.doi.org/10.1103/PhysRevB.49.10591[Crossref]
  • [7] A. Be’er, R. Kofman, F. Phillipp, Y. Lereah, Phys. Rev. B. 74, 224111 (2006) http://dx.doi.org/10.1103/PhysRevB.74.224111[Crossref]
  • [8] A. Be’er, R. Kofman, F. Phillipp, Y. Lereah, Phys. Rev. B. 76, 075410 (2007) http://dx.doi.org/10.1103/PhysRevB.76.075410[Crossref]
  • [9] A. Di. Cicco, Phys. Rev. Lett. 81, 2942 (1998) http://dx.doi.org/10.1103/PhysRevLett.81.2942[Crossref]
  • [10] R. Kofman, M. Allione, F. Celestini, Z. Barkay, Y. Lereah, Surf. Sci. (in press)
  • [11] R. Kofman, P. Cheyssac, R. Garrigos, Y. Lereah, G. Deutscher, Z. Phys. D Atom. Mol. Cl. 20, 267 (1991) http://dx.doi.org/10.1007/BF01543989[Crossref]
  • [12] L. G. Barry, Powder Diffraction File, Inorganic Volume (Joint Committee on Powder Diffraction Standards, Philadelphia, 1974)
  • [13] D. Hull, Introduction to Cislocations, 1st edition (Pergamon Press, Glasgow, 1965)
  • [14] A. P. Sutton, R. W. Balluffi, Interfaces in Crystalline Materials (Oxford Science Publications, Oxford, 1995)
  • [15] W. T. Read, Dislocations in Crystals (McGraw-Hill, New York, 1953)
  • [16] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B. 58, 14013 (1998) http://dx.doi.org/10.1103/PhysRevB.58.14013[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0063-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.