PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 3 | 711-716
Article title

Mechanical model of the Lorentz force and Coulomb interaction

Content
Title variants
Languages of publication
EN
Abstracts
EN
The centripetal and Coriolis accelerations experienced by a cart traveling over a rotating turntable are usually calculated proceeding from the known kinematics of the problem. Respective forces can be regarded as due to the entrainment of the cart in the moving solid environs. We extend the approach to the general case of a particle entrained in the flow of the surrounding medium. The expression for the driving force on the particle obtained from the kinematics of the entrainment prescribed appears to be isomorphic to the Lorentz and Coulomb force on a positive electric charge. The inverse direction of the electromagnetic force on a negative charge implies that a growing applied flow induces the upstream motion of the particle. A possible microscopic mechanism for it may be the Magnus force dynamics of a kink in a vortex tangle. The loop on a straight vortex filament can be taken as a model of the electron, the loop with a cavitation models the positron. The Lorentz force is concerned with the Coriolis acceleration. The Coulomb interaction is due to the centripetal or centrifugal force that arises in the turbophoresis of the kink in the perturbation field generated in the medium by the center of pressure.
Publisher
Journal
Year
Volume
6
Issue
3
Pages
711-716
Physical description
Dates
published
1 - 9 - 2008
online
17 - 7 - 2008
References
  • [1] H. Goldstein, Classical mechanics, 1st ed. (Addison-Wesley, Cambridge, MA, 1950)
  • [2] V.P. Dmitriyev, Meccanica 42, 283 (2007) http://dx.doi.org/10.1007/s11012-007-9053-y[Crossref]
  • [3] E.R. Huggins, Phys. Rev. A 1, 327 (1970) http://dx.doi.org/10.1103/PhysRevA.1.327[Crossref]
  • [4] A.H. M. Eisenga, R. Verzicco, G.J.F. van Heijst, J. Fluid Mech. 354, 215 (1998) http://dx.doi.org/10.1017/S0022112097007702[Crossref]
  • [5] K. Shariff, A. Leonard, Annu. Rev. Fluid Mech. 24, 235 (1992) http://dx.doi.org/10.1146/annurev.fl.24.010192.001315[Crossref]
  • [6] V.P. Dmitriyev, J. Appl. Math. 2, 241 (2002) http://dx.doi.org/10.1155/S1110757X02110199[Crossref]
  • [7] V.P. Dmitriyev, Am. J. Phys. 73, 563 (2005) http://dx.doi.org/10.1119/1.1873892[Crossref]
  • [8] V.P. Dmitriyev, Z. Naturforsch. A 48, 935 (1993)
  • [9] K.W. Shwarz, Phys. Rev. B 38, 2398 (1988) http://dx.doi.org/10.1103/PhysRevB.38.2398[Crossref]
  • [10] E.M. Kelly, Nuov. Cim. B 32, 117 (1976) http://dx.doi.org/10.1007/BF02726748[Crossref]
  • [11] M.W. Reeks, J. Aerosol Science 310, 729 (1983) http://dx.doi.org/10.1016/0021-8502(83)90055-1[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0052-y
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.