Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 6 | 3 | 711-716

Article title

Mechanical model of the Lorentz force and Coulomb interaction

Content

Title variants

Languages of publication

EN

Abstracts

EN
The centripetal and Coriolis accelerations experienced by a cart traveling over a rotating turntable are usually calculated proceeding from the known kinematics of the problem. Respective forces can be regarded as due to the entrainment of the cart in the moving solid environs. We extend the approach to the general case of a particle entrained in the flow of the surrounding medium. The expression for the driving force on the particle obtained from the kinematics of the entrainment prescribed appears to be isomorphic to the Lorentz and Coulomb force on a positive electric charge. The inverse direction of the electromagnetic force on a negative charge implies that a growing applied flow induces the upstream motion of the particle. A possible microscopic mechanism for it may be the Magnus force dynamics of a kink in a vortex tangle. The loop on a straight vortex filament can be taken as a model of the electron, the loop with a cavitation models the positron. The Lorentz force is concerned with the Coriolis acceleration. The Coulomb interaction is due to the centripetal or centrifugal force that arises in the turbophoresis of the kink in the perturbation field generated in the medium by the center of pressure.

Contributors

  • Lomonosov University, P.O.Box 160, Moscow, 117574, Russia

References

  • [1] H. Goldstein, Classical mechanics, 1st ed. (Addison-Wesley, Cambridge, MA, 1950)
  • [2] V.P. Dmitriyev, Meccanica 42, 283 (2007) http://dx.doi.org/10.1007/s11012-007-9053-y[Crossref]
  • [3] E.R. Huggins, Phys. Rev. A 1, 327 (1970) http://dx.doi.org/10.1103/PhysRevA.1.327[Crossref]
  • [4] A.H. M. Eisenga, R. Verzicco, G.J.F. van Heijst, J. Fluid Mech. 354, 215 (1998) http://dx.doi.org/10.1017/S0022112097007702[Crossref]
  • [5] K. Shariff, A. Leonard, Annu. Rev. Fluid Mech. 24, 235 (1992) http://dx.doi.org/10.1146/annurev.fl.24.010192.001315[Crossref]
  • [6] V.P. Dmitriyev, J. Appl. Math. 2, 241 (2002) http://dx.doi.org/10.1155/S1110757X02110199[Crossref]
  • [7] V.P. Dmitriyev, Am. J. Phys. 73, 563 (2005) http://dx.doi.org/10.1119/1.1873892[Crossref]
  • [8] V.P. Dmitriyev, Z. Naturforsch. A 48, 935 (1993)
  • [9] K.W. Shwarz, Phys. Rev. B 38, 2398 (1988) http://dx.doi.org/10.1103/PhysRevB.38.2398[Crossref]
  • [10] E.M. Kelly, Nuov. Cim. B 32, 117 (1976) http://dx.doi.org/10.1007/BF02726748[Crossref]
  • [11] M.W. Reeks, J. Aerosol Science 310, 729 (1983) http://dx.doi.org/10.1016/0021-8502(83)90055-1[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0052-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.