PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2008 | 6 | 3 | 671-684
Article title

The symmetry group of the quantum harmonic oscillator in an electric field

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we present two results. First, we derive the most general group of infinitesimal transformations for the Schrödinger Equation of the general time-dependent Harmonic Oscillator in an electric field. The infinitesimal generators and the commutation rules of this group are presented and the group structure is identified. From here it is easy to construct a set of unitary operators that transform the general Hamiltonian to a much simpler form. The relationship between squeezing and dynamical symmetries is also stressed. The second result concerns the application of these group transformations to obtain solutions of the Schrödinger equation in a time-dependent potential. These solutions are believed to be useful for describing particles confined in boxes with moving boundaries. The motion of the walls is indeed governed by the time-dependent frequency function. The applications of these results to non-rigid quantum dots and tunnelling through fluctuating barriers is also discussed, both in the presence and in the absence of a time-dependent electric field. The differences and similarities between both cases are pointed out.
Contributors
  • Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008, Salamanca, Spain
author
  • Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008, Salamanca, Spain
References
  • [1] E. Fermi, Phys. Rev. 75, 1169 (1949) http://dx.doi.org/10.1103/PhysRev.75.1169[Crossref]
  • [2] S.M. Ulam, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley Ed., 1961)
  • [3] G.M. Zallarskij, B.V. Chirikov, Dokl. Akad. Nauk. SSSR 159, 306 (1964)
  • [4] M.A. Lieberman, A.W.J. Lichtenberg, Phys. Rev. A 5, 1852 (1972) http://dx.doi.org/10.1103/PhysRevA.5.1852[Crossref]
  • [5] P. Seba, Phys. Rev. A 41, 2306 (1990) http://dx.doi.org/10.1103/PhysRevA.41.2306[Crossref]
  • [6] J.M. Cerveró, J.D. Lejarreta, Europhys. Lett. 45, 6 (1999) http://dx.doi.org/10.1209/epl/i1999-00123-2[Crossref]
  • [7] J.D. Lejarreta, J. Phys. A 32, 4749 (1999) http://dx.doi.org/10.1088/0305-4470/32/25/314[Crossref]
  • [8] B. Sutherland, Phys. Rev. Lett. 80, 3678 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.3678[Crossref]
  • [9] M. Maamache, J. Math. Phys. 39, 2306 (1998) http://dx.doi.org/10.1063/1.532341[Crossref]
  • [10] D. Leibfried, Rev. Mod. Phys. 75, 281 (2003) http://dx.doi.org/10.1103/RevModPhys.75.281[Crossref]
  • [11] W. Paul, Rev. Mod. Phys. 62, 531 (1990) http://dx.doi.org/10.1103/RevModPhys.62.531[Crossref]
  • [12] S. Chu, C.N. Cohen-Tannoudji, W.D. Philips, Rev. Mod. Phys. 70, 685 (1998) http://dx.doi.org/10.1103/RevModPhys.70.685[Crossref]
  • [13] A.V. Dodonov, E.V. Dodonov, V.V. Dodonov, arXiv: quant-ph/0308144
  • [14] C-C. Lee, C-L. Ho, Phys. Rev. A 65, 022111 (2002) http://dx.doi.org/10.1103/PhysRevA.65.022111[Crossref]
  • [15] J.M. Cerveró, A. Rodríguez, Int. J. Theor. Phys. 41, 503 (2002) http://dx.doi.org/10.1023/A:1014201406034[Crossref]
  • [16] J.M. Cerveró, J.D. Lejarreta J. Phys. A 29, 7545 (1996) http://dx.doi.org/10.1088/0305-4470/29/23/018[Crossref]
  • [17] J.M. Cerveró, Int. J. Theor. Phys. 38, 2095 (1999) http://dx.doi.org/10.1023/A:1026614021448[Crossref]
  • [18] P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)
  • [19] K. Andriopoulos, P.G.L. Leach, J. Phys. A 38, 4365 (2005) http://dx.doi.org/10.1088/0305-4470/38/20/005[Crossref]
  • [20] U. Niederer, Helvetica Physica Acta 45, 803 (1972)
  • [21] U. Niederer, Helvetica Physica Acta 46, 191 (1973)
  • [22] H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969) http://dx.doi.org/10.1063/1.1664991[Crossref]
  • [23] H.R. Lewis, W.E. Lawrence, J.D. Harris, Phys. Rev. Lett. 77, 5157 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.5157[Crossref]
  • [24] M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979) http://dx.doi.org/10.1119/1.11855[Crossref]
  • [25] A.G. Makowsky, J. Phys. A 29, 6003 (1996) http://dx.doi.org/10.1088/0305-4470/29/18/028[Crossref]
  • [26] G. Scalari, C. Walther, J. Faist, H. Beere, D. Ritchie, Appl. Phys. Lett. 88, 141102 (2006) http://dx.doi.org/10.1063/1.2191407[Crossref]
  • [27] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001) http://dx.doi.org/10.1088/0034-4885/64/11/204[Crossref]
  • [28] T.M. Fromhold et al., Nature 428, 726 (2004) http://dx.doi.org/10.1038/nature02445[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-008-0040-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.