Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2008 | 6 | 3 | 671-684

Article title

The symmetry group of the quantum harmonic oscillator in an electric field

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we present two results. First, we derive the most general group of infinitesimal transformations for the Schrödinger Equation of the general time-dependent Harmonic Oscillator in an electric field. The infinitesimal generators and the commutation rules of this group are presented and the group structure is identified. From here it is easy to construct a set of unitary operators that transform the general Hamiltonian to a much simpler form. The relationship between squeezing and dynamical symmetries is also stressed. The second result concerns the application of these group transformations to obtain solutions of the Schrödinger equation in a time-dependent potential. These solutions are believed to be useful for describing particles confined in boxes with moving boundaries. The motion of the walls is indeed governed by the time-dependent frequency function. The applications of these results to non-rigid quantum dots and tunnelling through fluctuating barriers is also discussed, both in the presence and in the absence of a time-dependent electric field. The differences and similarities between both cases are pointed out.

Contributors

  • Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008, Salamanca, Spain
author
  • Física Teórica, Facultad de Ciencias, Universidad de Salamanca, 37008, Salamanca, Spain

References

  • [1] E. Fermi, Phys. Rev. 75, 1169 (1949) http://dx.doi.org/10.1103/PhysRev.75.1169[Crossref]
  • [2] S.M. Ulam, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley Ed., 1961)
  • [3] G.M. Zallarskij, B.V. Chirikov, Dokl. Akad. Nauk. SSSR 159, 306 (1964)
  • [4] M.A. Lieberman, A.W.J. Lichtenberg, Phys. Rev. A 5, 1852 (1972) http://dx.doi.org/10.1103/PhysRevA.5.1852[Crossref]
  • [5] P. Seba, Phys. Rev. A 41, 2306 (1990) http://dx.doi.org/10.1103/PhysRevA.41.2306[Crossref]
  • [6] J.M. Cerveró, J.D. Lejarreta, Europhys. Lett. 45, 6 (1999) http://dx.doi.org/10.1209/epl/i1999-00123-2[Crossref]
  • [7] J.D. Lejarreta, J. Phys. A 32, 4749 (1999) http://dx.doi.org/10.1088/0305-4470/32/25/314[Crossref]
  • [8] B. Sutherland, Phys. Rev. Lett. 80, 3678 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.3678[Crossref]
  • [9] M. Maamache, J. Math. Phys. 39, 2306 (1998) http://dx.doi.org/10.1063/1.532341[Crossref]
  • [10] D. Leibfried, Rev. Mod. Phys. 75, 281 (2003) http://dx.doi.org/10.1103/RevModPhys.75.281[Crossref]
  • [11] W. Paul, Rev. Mod. Phys. 62, 531 (1990) http://dx.doi.org/10.1103/RevModPhys.62.531[Crossref]
  • [12] S. Chu, C.N. Cohen-Tannoudji, W.D. Philips, Rev. Mod. Phys. 70, 685 (1998) http://dx.doi.org/10.1103/RevModPhys.70.685[Crossref]
  • [13] A.V. Dodonov, E.V. Dodonov, V.V. Dodonov, arXiv: quant-ph/0308144
  • [14] C-C. Lee, C-L. Ho, Phys. Rev. A 65, 022111 (2002) http://dx.doi.org/10.1103/PhysRevA.65.022111[Crossref]
  • [15] J.M. Cerveró, A. Rodríguez, Int. J. Theor. Phys. 41, 503 (2002) http://dx.doi.org/10.1023/A:1014201406034[Crossref]
  • [16] J.M. Cerveró, J.D. Lejarreta J. Phys. A 29, 7545 (1996) http://dx.doi.org/10.1088/0305-4470/29/23/018[Crossref]
  • [17] J.M. Cerveró, Int. J. Theor. Phys. 38, 2095 (1999) http://dx.doi.org/10.1023/A:1026614021448[Crossref]
  • [18] P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)
  • [19] K. Andriopoulos, P.G.L. Leach, J. Phys. A 38, 4365 (2005) http://dx.doi.org/10.1088/0305-4470/38/20/005[Crossref]
  • [20] U. Niederer, Helvetica Physica Acta 45, 803 (1972)
  • [21] U. Niederer, Helvetica Physica Acta 46, 191 (1973)
  • [22] H.R. Lewis, W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969) http://dx.doi.org/10.1063/1.1664991[Crossref]
  • [23] H.R. Lewis, W.E. Lawrence, J.D. Harris, Phys. Rev. Lett. 77, 5157 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.5157[Crossref]
  • [24] M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979) http://dx.doi.org/10.1119/1.11855[Crossref]
  • [25] A.G. Makowsky, J. Phys. A 29, 6003 (1996) http://dx.doi.org/10.1088/0305-4470/29/18/028[Crossref]
  • [26] G. Scalari, C. Walther, J. Faist, H. Beere, D. Ritchie, Appl. Phys. Lett. 88, 141102 (2006) http://dx.doi.org/10.1063/1.2191407[Crossref]
  • [27] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001) http://dx.doi.org/10.1088/0034-4885/64/11/204[Crossref]
  • [28] T.M. Fromhold et al., Nature 428, 726 (2004) http://dx.doi.org/10.1038/nature02445[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-008-0040-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.