PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 7 | 788-795
Article title

Azobenzene functionalized mesoporous AlMCM-41-type support for drug release applications

Content
Title variants
Languages of publication
EN
Abstracts
EN
A light-responsive material, aminoazobenzene functionalized AlMCM-41, was synthesized and characterized in order to be used as carrier for drug delivery devices. The light-induced hydrophobic-hydrophilic switching effect of azobenzene functionalized aluminosilicate was exploited in the release of irinotecan, a cytostatic drug. To obtain the functionalized mesoporous support, an azobenzene-silane precursor was synthesized by coupling 4-(4′-aminophenylazo) benzoic acid with 3-aminopropyl triethoxysilane and further grafted on AlMCM-41. The azobenzene functionalized mesoporous aluminosilicate exhibited no significant toxicity towards murine fibroblast healthy cells and a reduced toxicity towards murine melanocyte cells. The hybrid materials obtained by loading irinotecan on AlMCM-41 (wt. 35.4%) and aminoazobenzene modified AlMCM-41 (wt. 22%), respectively were characterized by FTIR, small and wide angle XRD, N2 adsorption-desorption isotherms and DSC analyses. A two-fold increase in the drug release rate from azobenzene functionalized aluminosilicate in phosphate buffer solution under UV irradiation was noticed, as compared with dark conditions. Moreover, the azobenzene functionalization of AlMCM-41 significantly increased the irinotecan delivery rate and total cumulative release in comparison with the pristine AlMCM-41 in similar conditions.
Publisher

Journal
Year
Volume
12
Issue
7
Pages
788-795
Physical description
Dates
published
1 - 7 - 2014
online
30 - 4 - 2014
Contributors
  • University “Politehnica” of Bucharest
  • University “Politehnica” of Bucharest
  • University “Politehnica” of Bucharest
  • Romanian Academy of Sciences
References
  • [1] M. Colilla, B. Gonzalez, M. Vallet-Regi, Biomat. Sci. 1, 114 (2013) http://dx.doi.org/10.1039/c2bm00085g[Crossref]
  • [2] Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Chem. Soc. Rev. 41, 2590 (2012) http://dx.doi.org/10.1039/c1cs15246g[Crossref]
  • [3] A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3, 2801 (2011) http://dx.doi.org/10.1039/c1nr10224a[Crossref]
  • [4] J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.Y. Lin, Small 6, 1952 (2010) http://dx.doi.org/10.1002/smll.200901789[Crossref]
  • [5] F. Tang, L. Li, D. Chen, Adv. Mater. 24, 1504 (2012) http://dx.doi.org/10.1002/adma.201104763[Crossref]
  • [6] M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Edit. 46, 7548 (2007) http://dx.doi.org/10.1002/anie.200604488[Crossref]
  • [7] T. Tanaka, H. Ogino, M. Iwamoto, Langmuir 23, 11417 (2007) http://dx.doi.org/10.1021/la7019236[Crossref]
  • [8] N. Liu, Z. Chen, D.R. Dunphy, Y.-B. Jiang, R.A. Assink, C.J. Brinker, Angew. Chem. Int. Edit. 42, 1731 (2003) http://dx.doi.org/10.1002/anie.200250189[Crossref]
  • [9] J. Lu, E. Choi, F. Tamanoi, J.I. Zink, Small 4, 421 (2008) http://dx.doi.org/10.1002/smll.200700903[Crossref]
  • [10] S. Angelos, E. Choi, F. Vögtle, L. De Cola, J.I. Zink, J. Phys. Chem. C 111, 6589 (2007) http://dx.doi.org/10.1021/jp070721l[Crossref]
  • [11] M. Alvaro, M. Benitez, D. Das, H. Garcia, E. Peris, Chem. Mater. 17, 4958 (2005) http://dx.doi.org/10.1021/cm050837z[Crossref]
  • [12] Y. Zhu, M. Fujiwara, Angew. Chem. Int. Edit. 46, 2241 (2007) http://dx.doi.org/10.1002/anie.200604850[Crossref]
  • [13] Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan, ACS Nano 6, 6337 (2012) http://dx.doi.org/10.1021/nn3018365[Crossref]
  • [14] D.P. Ferris, Y.-L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, J. Am. Chem. Soc. 131, 1686 (2009) http://dx.doi.org/10.1021/ja807798g[Crossref]
  • [15] Y.-W. Yang, Med. Chem. Comm. 2, 1033 (2011) http://dx.doi.org/10.1039/c1md00158b[Crossref]
  • [16] R.H. El Halabieh, O. Mermut, C.J. Barrett, Pure Appl. Chem. 76, 1445 (2004) http://dx.doi.org/10.1351/pac200476071445[Crossref]
  • [17] X. Pei, A. Fernandes, B. Mathy, X. Laloyaux, B. Nysten, O. Riant, A.M. Jonas, Langmuir 27, 9403 (2011) http://dx.doi.org/10.1021/la201526u[Crossref]
  • [18] C. Song, R. Griffin, H. Park, In: B. Teicher (Ed.), Cancer Drug Resistance (Humana Press, Totowa, New Jersey, 2006) 21
  • [19] K.H. Schündehütte, Houben-Weyl Methoden der Organischen Chemie (Thieme, Stuttgart, 196510/3 (in German)
  • [20] G.B. Demirel, N. Dilsiz, M. Cakmak, T. Caykara, J. Mater. Chem. 21, 3189 (2011) http://dx.doi.org/10.1039/c0jm03528a[Crossref]
  • [21] F. Laduron, V. Tamborowski, L. Moens, A. Horvath, D. De Smaele, S. Leurs, Org. Process. Res. Dev. 9, 102 (2005) http://dx.doi.org/10.1021/op049812w[Crossref]
  • [22] G. Maria, D. Berger, S. Nastase, I. Luta, Micropor. Mesopor. Mat. 149, 25 (2012) http://dx.doi.org/10.1016/j.micromeso.2011.09.005[Crossref]
  • [23] A.H. Janssen, A.J. Koster, K.P. de Jong, J. Phys. Chem. B 106, 11905 (2002) http://dx.doi.org/10.1021/jp025971a[Crossref]
  • [24] M.J.B. Souza, A.S. Araujo, A.M.G. Pedrosa, B.A. Marinkovic, P.M. Jardim, E. Morgado Jr, Mater. Lett. 60, 2682 (2006) http://dx.doi.org/10.1016/j.matlet.2006.01.066[Crossref]
  • [25] S. Nastase, L. Bajenaru, C. Matei, R. A. Mitran, D. Berger, Micropor. Mesopor. Mat. 182, 32 (2013) http://dx.doi.org/10.1016/j.micromeso.2013.08.018[Crossref]
  • [26] D. Arcos, A. López-Noriega, E. Ruiz-Hernández, O. Terasaki, M. Vallet-Regí, Chem. Mater. 21, 1000 (2009) http://dx.doi.org/10.1021/cm801649z[Crossref]
  • [27] Q. He, J. Shi, F. Chen, M. Zhu, L. Zhang, Biomater. 31, 3335 (2010) http://dx.doi.org/10.1016/j.biomaterials.2010.01.015[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-014-0534-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.