Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2013 | 11 | 9 | 1423-1430

Article title

How to specify the structure of substituted blade-like zigzag diamondoids


Title variants

Languages of publication



Abstract The dualist of an [n]diamondoid consists of vertices situated in the centers of each of the n adamantane units, and of edges connecting vertices corresponding to units sharing a chair-shaped hexagon of carbon atoms. Since the polycyclic structure of diamondoids is rather complex, so is their nomenclature. For specifying chemical constitution or isomerism of all diamondoids the Balaban-Schleyer graph-theoretical approach based on dualists has been generally adopted. However, when one needs to indicate the location of C and H atoms or of a substituent in a diamondoid or the stereochemical relationships between substituents, only the IUPAC polycycle nomenclature (von Baeyer nomenclature) provides the unique solution. This is so since each IUPAC name is associated with a unique atom numbering scheme. Diamondoids are classified into catamantanes (which can be regular or irregular), perimantanes, and coronamantanes. Regular catamantanes have molecular formulas C4n+6H4n+12. Among regular catamantanes, the rigid blade-shaped zigzag catamantanes (so called because their dualists consist of a zigzag line with a code of alternating digits 1 and 2) exhibit a simple pattern in their von Baeyer nomenclature. Their carbon atoms form a main ring with 4n + 4 atoms, and the remaining atoms form two 1-carbon bridges. All zigzag [n]catamantanes with n > 2 have quaternary carbon atoms, and the first bridgehead in the main ring is such an atom. Their partitioned formula is Cn−2(CH)2n+4(CH2)n+4. As a function of their parity, IUPAC names based on the von Baeyer approach have been devised for all zigzag catamantanes, allowing the unique location for every C and H atom. The dualist of such a zigzag catamantane defines a plane bisecting the molecule, and the stereochemical features of hydrogens attached to secondary carbon atoms can be specified relatively to that plane. Graphical abstract [...]










Physical description


1 - 9 - 2013
29 - 6 - 2013


  • Texas A&M University at Galveston, Galveston, TX, 77553, USA
  • Leuphana University Lüneburg, D-21335, Lüneburg, Germany


  • [1] J.E. Dahl, S.G. Liu, R. M. K. Carlson, Science 299, 96 (2003) http://dx.doi.org/10.1126/science.1078239[Crossref]
  • [2] J.E. Dahl, J.M. Moldowan, K.E. Peters, G.E. Claypool, M.A. Rooney, G.E. Michael, M.R. Mello, M.L. Kohnen, Nature 399, 54 (1999) http://dx.doi.org/10.1038/19953[Crossref]
  • [3] P.v.R. Schleyer, J. Am. Chem. Soc. 79, 3292 (1957) http://dx.doi.org/10.1021/ja01569a086[Crossref]
  • [4] P.v.R. Schleyer, in: G.A. Olah (Ed.), Cage Hydrocarbons (Wiley-Interscience, New York, 1990) 1–38
  • [5] V.Z. Williams, P.v.R. Schleyer, G.J. Gleicher, R.B. Rodewald, J. Am. Chem. Soc. 88, 3862 (1966) http://dx.doi.org/10.1021/ja00968a036[Crossref]
  • [6] M.A. McKervey, Chem. Soc. Rev. 3, 479 (1974) http://dx.doi.org/10.1039/cs9740300479[Crossref]
  • [7] M.A. McKervey, Tetrahedron 36, 971 (1980) http://dx.doi.org/10.1016/0040-4020(80)80050-0[Crossref]
  • [8] M.A. McKervey, J.J. Rooney, in: G.A. Olah (Ed.), Cage Hydrocarbons (Wiley-Interscience, New York, 1990) 39–64
  • [9] W. Burns, T.R.B. Mitchell, M.A. McKervey, J.J. Rooney, G. Ferguson, P. Roberts, Chem. Commun. 893 (1976) [Crossref]
  • [10] R.C. Fort, Jr., P.v.R. Schleyer, Chem. Rev. 64, 277 (1964) http://dx.doi.org/10.1021/cr60229a004[Crossref]
  • [11] R.C. Fort, Jr., Adamantane. The Chemistry of Diamond Molecules (Marcel Dekker, New York, 1976)
  • [12] J. Filik, In: N. Ali, A. Öchsner, W. Ahmed (Eds.), Carbon-Based Nanomaterials, Materials Science Foundations, Trans. Tech. Switzerland 65–66, 1 (2010)
  • [13] A.T. Balaban, In: C. Parkanyi (Ed.), Theoretical Organic Chemistry (Elsevier, Amsterdam, 1998) 381–404
  • [14] A.T. Balaban, Computers Math. Applic. 17, 397 (1989), Reprinted in Symmetry II, I. (1989), Reprinted in Symmetry II, I. Hargittai (Ed.), (Pergamon Press, Oxford, 1989) 397–416 http://dx.doi.org/10.1016/0898-1221(89)90170-3[Crossref]
  • [15] G.A. Mansoori, P.L.B. de Araujo, E.S. de Araujo, Diamondoid Molecules: With Applications in Biomedicine, Materials Science, Nanotechnology and Petroleum Science. (World Scientific Publishing Co., New Jersey, 2012) http://dx.doi.org/10.1142/7559[WoS][Crossref]
  • [16] G.A. Mansoori, Adv. Chem. Phys. 136, 207 (2007) http://dx.doi.org/10.1002/9780470175422.ch4[Crossref]
  • [17] P.L.B. de Araujo, G.A. Mansoori, E.S. de Araujo, Int. J. Oil, Gas, Coal Technol. 5, 316 (2012) http://dx.doi.org/10.1504/IJOGCT.2012.048981[Crossref]
  • [18] A.T. Balaban, In: M.V. Diudea, C.L. Nagy (Eds.), Diamond and Related Nanostructures (Springer, Berlin, 2013)
  • [19] H. Schwertfeger, A.A. Fokin, P.R. Schreiner, Angew. Chem. Int. Ed. 47, 1022 (2008) http://dx.doi.org/10.1002/anie.200701684[Crossref]
  • [20] P.F.H. Schwab, M.D. Levin, J. Michl, Chem. Rev. 99, 1863 (1999) http://dx.doi.org/10.1021/cr970070x[Crossref]
  • [21] P.F.H. Schwab, J.R. Smith, J. Michl, Chem. Rev. 105, 1197 (2005) http://dx.doi.org/10.1021/cr040707u[Crossref]
  • [22] A.A. Fokin, P. A. Gunchenko, A.A. Novikovsky, T.E. Shubina, B.V. Chernyaev, J.E.P. Dahl, R.M.K. Carlson, A.G. Yurchenko, P.R. Schreiner, Eur. J. Org. Chem. 5153 (2009) [Crossref]
  • [23] A A. Fokin, B.A. Tkachenko, N.A. Fokina, H. Hausmann, M. Serafin, J.E.P. Dahl, R.M.K. Carlson, P.R. Schreiner, Chem. Eur. J. 15, 3851 (2009) http://dx.doi.org/10.1002/chem.200801867[Crossref]
  • [24] H. Schwertfeger, C. Würtele, H. Hausmann, J.E.P. Dahl, R.M.K. Carlson, A.A. Fokin, P.R. Schreiner, Adv. Synth. Catal. 351, 1041 (2009) http://dx.doi.org/10.1002/adsc.200800787[Crossref]
  • [25] P.R. Schreiner, A.A. Fokin, H.P. Reisenauer, B.A. Tkachenko, E. Vass, M.M. Olmstead, D. Bläser, R. Boese, J.E.P. Dahl, R.M.K. Carlson, J. Am. Chem. Soc. 131, 11292 (2009) http://dx.doi.org/10.1021/ja904527g[Crossref]
  • [26] A.T. Balaban, J. Chem. Inf. Model. 52, 2856 (2012) http://dx.doi.org/10.1021/ci300406b[Crossref]
  • [27] A.T. Balaban, J. Math. Chem. 51, 1043 (2013) http://dx.doi.org/10.1007/s10910-012-0130-7[Crossref]
  • [28] A.T. Balaban, P. v. R. Schleyer, Tetrahedron 34, 3599 (1978) http://dx.doi.org/10.1016/0040-4020(78)88437-3[Crossref]
  • [29] A.T. Balaban, MATCH Commun. Math. Comput. Chem. 2, 51 (1976)
  • [30] A.T. Balaban, Rev. Roum. Chim. 21, 1049 (1976)
  • [31] A.T. Balaban, D.J. Klein, J.E. Dahl, R.M.K. Carlson, The Open Org. Chem. J. 1, 13 (2007)
  • [32] J.E. Dahl, J.M. Moldowan, J.M. Peakman, J.C. Cardy, E. Lobkovsky, M.M. Olmstead, P.W. May, T.J. Davis, J.W. Steeds, K.E. Peters, A. Pepper, A. Ekuan, R.M.K. Carlson, Angew. Chem. Int. Ed. 42, 2040 (2003) http://dx.doi.org/10.1002/anie.200250794[Crossref]
  • [33] J. Filik, J.N. Harvey, N.L. Allan, P.W. May, J.E.P. Dahl, S. Liu, R.M.K. Carlson, Spectrochim. Acta A 64, 681 (2006) http://dx.doi.org/10.1016/j.saa.2005.07.070[Crossref]
  • [34] G.P. Moss, Pure Appl. Chem. 71, 513 (1999) http://dx.doi.org/10.1351/pac199971030513[Crossref]
  • [35] T. Renner, H.A. Favre, W.H. Powell, Nomenclature of Organic Chemistry: UPAC Recommendations 2012 and Preferred IUPAC Names (Royal Society of Chemistry, London, 2013)
  • [36] G. Rücker, C. Rücker, Chimia 44, 116 (1990)

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.