Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 9 | 1423-1430

Article title

How to specify the structure of substituted blade-like zigzag diamondoids

Content

Title variants

Languages of publication

EN

Abstracts

EN
Abstract The dualist of an [n]diamondoid consists of vertices situated in the centers of each of the n adamantane units, and of edges connecting vertices corresponding to units sharing a chair-shaped hexagon of carbon atoms. Since the polycyclic structure of diamondoids is rather complex, so is their nomenclature. For specifying chemical constitution or isomerism of all diamondoids the Balaban-Schleyer graph-theoretical approach based on dualists has been generally adopted. However, when one needs to indicate the location of C and H atoms or of a substituent in a diamondoid or the stereochemical relationships between substituents, only the IUPAC polycycle nomenclature (von Baeyer nomenclature) provides the unique solution. This is so since each IUPAC name is associated with a unique atom numbering scheme. Diamondoids are classified into catamantanes (which can be regular or irregular), perimantanes, and coronamantanes. Regular catamantanes have molecular formulas C4n+6H4n+12. Among regular catamantanes, the rigid blade-shaped zigzag catamantanes (so called because their dualists consist of a zigzag line with a code of alternating digits 1 and 2) exhibit a simple pattern in their von Baeyer nomenclature. Their carbon atoms form a main ring with 4n + 4 atoms, and the remaining atoms form two 1-carbon bridges. All zigzag [n]catamantanes with n > 2 have quaternary carbon atoms, and the first bridgehead in the main ring is such an atom. Their partitioned formula is Cn−2(CH)2n+4(CH2)n+4. As a function of their parity, IUPAC names based on the von Baeyer approach have been devised for all zigzag catamantanes, allowing the unique location for every C and H atom. The dualist of such a zigzag catamantane defines a plane bisecting the molecule, and the stereochemical features of hydrogens attached to secondary carbon atoms can be specified relatively to that plane. Graphical abstract [...]

Publisher

Journal

Year

Volume

11

Issue

9

Pages

1423-1430

Physical description

Dates

published
1 - 9 - 2013
online
29 - 6 - 2013

Contributors

  • Texas A&M University at Galveston, Galveston, TX, 77553, USA
  • Leuphana University Lüneburg, D-21335, Lüneburg, Germany

References

  • [1] J.E. Dahl, S.G. Liu, R. M. K. Carlson, Science 299, 96 (2003) http://dx.doi.org/10.1126/science.1078239[Crossref]
  • [2] J.E. Dahl, J.M. Moldowan, K.E. Peters, G.E. Claypool, M.A. Rooney, G.E. Michael, M.R. Mello, M.L. Kohnen, Nature 399, 54 (1999) http://dx.doi.org/10.1038/19953[Crossref]
  • [3] P.v.R. Schleyer, J. Am. Chem. Soc. 79, 3292 (1957) http://dx.doi.org/10.1021/ja01569a086[Crossref]
  • [4] P.v.R. Schleyer, in: G.A. Olah (Ed.), Cage Hydrocarbons (Wiley-Interscience, New York, 1990) 1–38
  • [5] V.Z. Williams, P.v.R. Schleyer, G.J. Gleicher, R.B. Rodewald, J. Am. Chem. Soc. 88, 3862 (1966) http://dx.doi.org/10.1021/ja00968a036[Crossref]
  • [6] M.A. McKervey, Chem. Soc. Rev. 3, 479 (1974) http://dx.doi.org/10.1039/cs9740300479[Crossref]
  • [7] M.A. McKervey, Tetrahedron 36, 971 (1980) http://dx.doi.org/10.1016/0040-4020(80)80050-0[Crossref]
  • [8] M.A. McKervey, J.J. Rooney, in: G.A. Olah (Ed.), Cage Hydrocarbons (Wiley-Interscience, New York, 1990) 39–64
  • [9] W. Burns, T.R.B. Mitchell, M.A. McKervey, J.J. Rooney, G. Ferguson, P. Roberts, Chem. Commun. 893 (1976) [Crossref]
  • [10] R.C. Fort, Jr., P.v.R. Schleyer, Chem. Rev. 64, 277 (1964) http://dx.doi.org/10.1021/cr60229a004[Crossref]
  • [11] R.C. Fort, Jr., Adamantane. The Chemistry of Diamond Molecules (Marcel Dekker, New York, 1976)
  • [12] J. Filik, In: N. Ali, A. Öchsner, W. Ahmed (Eds.), Carbon-Based Nanomaterials, Materials Science Foundations, Trans. Tech. Switzerland 65–66, 1 (2010)
  • [13] A.T. Balaban, In: C. Parkanyi (Ed.), Theoretical Organic Chemistry (Elsevier, Amsterdam, 1998) 381–404
  • [14] A.T. Balaban, Computers Math. Applic. 17, 397 (1989), Reprinted in Symmetry II, I. (1989), Reprinted in Symmetry II, I. Hargittai (Ed.), (Pergamon Press, Oxford, 1989) 397–416 http://dx.doi.org/10.1016/0898-1221(89)90170-3[Crossref]
  • [15] G.A. Mansoori, P.L.B. de Araujo, E.S. de Araujo, Diamondoid Molecules: With Applications in Biomedicine, Materials Science, Nanotechnology and Petroleum Science. (World Scientific Publishing Co., New Jersey, 2012) http://dx.doi.org/10.1142/7559[WoS][Crossref]
  • [16] G.A. Mansoori, Adv. Chem. Phys. 136, 207 (2007) http://dx.doi.org/10.1002/9780470175422.ch4[Crossref]
  • [17] P.L.B. de Araujo, G.A. Mansoori, E.S. de Araujo, Int. J. Oil, Gas, Coal Technol. 5, 316 (2012) http://dx.doi.org/10.1504/IJOGCT.2012.048981[Crossref]
  • [18] A.T. Balaban, In: M.V. Diudea, C.L. Nagy (Eds.), Diamond and Related Nanostructures (Springer, Berlin, 2013)
  • [19] H. Schwertfeger, A.A. Fokin, P.R. Schreiner, Angew. Chem. Int. Ed. 47, 1022 (2008) http://dx.doi.org/10.1002/anie.200701684[Crossref]
  • [20] P.F.H. Schwab, M.D. Levin, J. Michl, Chem. Rev. 99, 1863 (1999) http://dx.doi.org/10.1021/cr970070x[Crossref]
  • [21] P.F.H. Schwab, J.R. Smith, J. Michl, Chem. Rev. 105, 1197 (2005) http://dx.doi.org/10.1021/cr040707u[Crossref]
  • [22] A.A. Fokin, P. A. Gunchenko, A.A. Novikovsky, T.E. Shubina, B.V. Chernyaev, J.E.P. Dahl, R.M.K. Carlson, A.G. Yurchenko, P.R. Schreiner, Eur. J. Org. Chem. 5153 (2009) [Crossref]
  • [23] A A. Fokin, B.A. Tkachenko, N.A. Fokina, H. Hausmann, M. Serafin, J.E.P. Dahl, R.M.K. Carlson, P.R. Schreiner, Chem. Eur. J. 15, 3851 (2009) http://dx.doi.org/10.1002/chem.200801867[Crossref]
  • [24] H. Schwertfeger, C. Würtele, H. Hausmann, J.E.P. Dahl, R.M.K. Carlson, A.A. Fokin, P.R. Schreiner, Adv. Synth. Catal. 351, 1041 (2009) http://dx.doi.org/10.1002/adsc.200800787[Crossref]
  • [25] P.R. Schreiner, A.A. Fokin, H.P. Reisenauer, B.A. Tkachenko, E. Vass, M.M. Olmstead, D. Bläser, R. Boese, J.E.P. Dahl, R.M.K. Carlson, J. Am. Chem. Soc. 131, 11292 (2009) http://dx.doi.org/10.1021/ja904527g[Crossref]
  • [26] A.T. Balaban, J. Chem. Inf. Model. 52, 2856 (2012) http://dx.doi.org/10.1021/ci300406b[Crossref]
  • [27] A.T. Balaban, J. Math. Chem. 51, 1043 (2013) http://dx.doi.org/10.1007/s10910-012-0130-7[Crossref]
  • [28] A.T. Balaban, P. v. R. Schleyer, Tetrahedron 34, 3599 (1978) http://dx.doi.org/10.1016/0040-4020(78)88437-3[Crossref]
  • [29] A.T. Balaban, MATCH Commun. Math. Comput. Chem. 2, 51 (1976)
  • [30] A.T. Balaban, Rev. Roum. Chim. 21, 1049 (1976)
  • [31] A.T. Balaban, D.J. Klein, J.E. Dahl, R.M.K. Carlson, The Open Org. Chem. J. 1, 13 (2007)
  • [32] J.E. Dahl, J.M. Moldowan, J.M. Peakman, J.C. Cardy, E. Lobkovsky, M.M. Olmstead, P.W. May, T.J. Davis, J.W. Steeds, K.E. Peters, A. Pepper, A. Ekuan, R.M.K. Carlson, Angew. Chem. Int. Ed. 42, 2040 (2003) http://dx.doi.org/10.1002/anie.200250794[Crossref]
  • [33] J. Filik, J.N. Harvey, N.L. Allan, P.W. May, J.E.P. Dahl, S. Liu, R.M.K. Carlson, Spectrochim. Acta A 64, 681 (2006) http://dx.doi.org/10.1016/j.saa.2005.07.070[Crossref]
  • [34] G.P. Moss, Pure Appl. Chem. 71, 513 (1999) http://dx.doi.org/10.1351/pac199971030513[Crossref]
  • [35] T. Renner, H.A. Favre, W.H. Powell, Nomenclature of Organic Chemistry: UPAC Recommendations 2012 and Preferred IUPAC Names (Royal Society of Chemistry, London, 2013)
  • [36] G. Rücker, C. Rücker, Chimia 44, 116 (1990)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-013-0275-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.