PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 1 | 25-34
Article title

Fully automated chip-based nanoelectrospray combined with electron transfer dissociation for high throughput top-down proteomics

Content
Title variants
Languages of publication
EN
Abstracts
EN
The conventional protocol for protein identification by electrospray ionization mass spectrometry (MS) is based on enzymatic digestion which renders peptides to be analyzed by liquid chromatography-MS and collision-induced dissociation (CID) multistage MS, in the so-called bottom-up approach. Though this method has brought a significant progress to the field, many limitations, among which, the low throughput and impossibility to characterize in detail posttranslational modifications in terms of site(s) and structure, were reported. Therefore, the research is presently focused on the development of procedures for efficient top-down fragmentation of intact protein ions. In this context, we developed here an approach combining fully automated chip-based-nanoelectrospray ionisation (nanoESI), performed on a NanoMate robot, with electron transfer dissociation (ETD) for peptide and top-down protein sequencing and identification. This advanced analytical platform, integrating robotics, microfluidics technology, ETD and alternate ETD/CID, was tested and found ideally suitable for structural investigation of peptides and modified/functionalized peptides as well as for top-down analysis of medium size proteins by tandem MS experiments of significantly increased throughput and sensitivity. The obtained results indicate that NanoMate-ETD and ETD/CID may represent a viable alternative to the current MS strategies, with potential to develop into a method of routine use for high throughput top-down proteomics.
Publisher
Journal
Year
Volume
11
Issue
1
Pages
25-34
Physical description
Dates
published
1 - 1 - 2013
online
24 - 10 - 2012
References
  • [1] C. Röwer, C. Koy, M. Hecker, T. Reimer, B. Gerber, H.J. Thiesen, M.O. Glocker, J. Am. Soc. Mass Spectrom. 22, 440 (2011) http://dx.doi.org/10.1007/s13361-010-0031-6[Crossref]
  • [2] M.M. Savitski, F. Kjeldsen, M.L. Nielsen, R.A. Zubarev, J. Proteome Res. 6, 2669 (2007) http://dx.doi.org/10.1021/pr070121z[Crossref]
  • [3] A.A. Shvartsburg, A.J. Creese, R.D. Smith, H.J. Cooper, Anal. Chem. 83, 6918 (2011) http://dx.doi.org/10.1021/ac201640d[Crossref]
  • [4] A. Michalski, J. Cox, M. Mann, J. Proteome Res. 10, 1785 (2011) http://dx.doi.org/10.1021/pr101060v[Crossref]
  • [5] A.L. Capriotti, C. Cavaliere, P. Foglia, R. Samperi, A. Laganà, J. Chromatogr. A. 1218, 8760 (2011) http://dx.doi.org/10.1016/j.chroma.2011.05.094[Crossref]
  • [6] H. Zhang, W. Cui, J. Wen, R.E. Blankenship, M.L. Gross, Anal. Chem. 83, 15598 (2011)
  • [7] W. Cui, H.W. Rohrs, M.L. Gross, Analyst 136, 3854 (2011) http://dx.doi.org/10.1039/c1an15286f[Crossref]
  • [8] F.H. Cederkvist, A.D. Zamfir, S. Bahrke, V.G.H. Eijsink, M. Sørlie, J. Peter-Katalinić, M.G. Peter, Angew. Chem. Int. Ed. Engl. 45, 2429 (2006) http://dx.doi.org/10.1002/anie.200503168[Crossref]
  • [9] S. Yin, J.A. Loo, Int. J. Mass Spectrom. 300, 118 (2011) http://dx.doi.org/10.1016/j.ijms.2010.06.032[Crossref]
  • [10] R.A. Zubarev, D.M. Horn, E.K. Fridriksson, N.L. Kelleher, N.A. Kruger, M.A. Lewis, B.K. Carpenter, F.W. McLafferty, Anal. Chem. 72, 563 (2000) http://dx.doi.org/10.1021/ac990811p[Crossref]
  • [11] K. Breuker, H. Oh, C. Lin, B.K. Carpenter, F.W. McLafferty, Proc. Natl. Acad. Sci. USA 101, 14011 (2004) http://dx.doi.org/10.1073/pnas.0406095101[Crossref]
  • [12] K. Breuker, F.W. McLafferty, Angew. Chem. Int. Ed. Engl. 44, 4911 (2005) http://dx.doi.org/10.1002/anie.200500668[Crossref]
  • [13] S. Wu, N. Tolić, Z. Tian, E.W. Robinson, L. Paša-Tolić, Methods Mol. Biol. 694, 291 (2011) http://dx.doi.org/10.1007/978-1-60761-977-2_18[Crossref]
  • [14] D. Calligaris, C. Villard, D. Lafitte, J. Proteomics 74, 920 (2011) http://dx.doi.org/10.1016/j.jprot.2011.03.030[Crossref]
  • [15] Z. Darula, R.J. Chalkley, A. Lynn, P.R. Baker, K.F. Medzihradszky, Amino Acids 41, 321 (2011) http://dx.doi.org/10.1007/s00726-010-0692-2[Crossref]
  • [16] N.P. Sargaeva, C. Lin, P.B.J. O’Connor, J. Am. Soc. Mass Spectrom. 22, 480 (2011) http://dx.doi.org/10.1007/s13361-010-0049-9[Crossref]
  • [17] H. Hahne, B. Kuster, J. Am. Soc. Mass Spectrom. 22, 931 (2011) http://dx.doi.org/10.1007/s13361-011-0107-y[Crossref]
  • [18] J.P. Williams, J.M. Brown, I. Campuzano, P.J. Sadler, Chem. Commun. 46, 5458 (2010) http://dx.doi.org/10.1039/c0cc00358a[Crossref]
  • [19] S.R. Hart, Methods Mol. Biol. 658, 339 (2010) http://dx.doi.org/10.1007/978-1-60761-780-8_21[Crossref]
  • [20] Y. Shen, N. Tolić, S.O. Purvine, R.D. Smith, J. Proteome Res. 11, 668 (2012) http://dx.doi.org/10.1021/pr200597j[Crossref]
  • [21] K. Gupta, M. Kumar, K. Chandrashekara, K.S. Krishnan, P. Balaram, J. Proteome Res. 11, 515 (2012) http://dx.doi.org/10.1021/pr200091v[Crossref]
  • [22] R. Almeida, C. Mosoarca, M. Chirita, V. Udrescu, N. Dinca, Z. Vukelić, M. Allen, A.D. Zamfir, Anal. Biochem. 378, 43 (2008) http://dx.doi.org/10.1016/j.ab.2008.03.039[Crossref]
  • [23] A. Serb, C. Schiopu, C. Flangea, E. Sisu, A.D. Zamfir, J. Mass Spectrom. 44, 1434 (2009) http://dx.doi.org/10.1002/jms.1625[Crossref]
  • [24] A. Serb, C. Schiopu, C. Flangea, Ž. Vukelić, E. Sisu, L. Zagrean, A.D. Zamfir, Eur. J. Mass Spectrom. 15, 541 (2009) http://dx.doi.org/10.1255/ejms.1009[Crossref]
  • [25] C. Flangea, A.F. Serb, C. Schiopu, S. Tudor, E. Sisu, D.G. Seidler, A.D. Zamfir, Cent. Eur. J. Chem. 7, 752 (2009) http://dx.doi.org/10.2478/s11532-009-0070-7[Crossref]
  • [26] C. Schiopu, C. Flangea, F. Capitan, A. Serb, Z. Vukelić, S. Kalanj-Bognar, E. Sisu, M. Przybylski, A.D. Zamfir, Anal. Bioanal. Chem. 395, 2465 (2009) http://dx.doi.org/10.1007/s00216-009-3188-8[Crossref]
  • [27] L. Bindila, J. Peter-Katalinić, A.D. Zamfir, Electrophoresis 26, 1488 (2005) http://dx.doi.org/10.1002/elps.200410307[Crossref]
  • [28] Z. Vukelić, S. Kalanj-Bognar, M. Froesch, L. Bîndila, B. Radić, M. Allen, J. Peter-Katalinić, A.D. Zamfir, Glycobiology 17, 504 (2007) http://dx.doi.org/10.1093/glycob/cwm012[Crossref]
  • [29] A.D. Zamfir, N. Lion, Z. Vukelic, L. Bindila, J. Rossier, H.H. Girault, J. Peter-Katalinic, Lab. Chip 5, 298 (2005) http://dx.doi.org/10.1039/b413282c[Crossref]
  • [30] I. Sisu, V. Udrescu, C. Flangea, S. Tudor, N. Dinca, L. Rusnac, A.D. Zamfir, E. Sisu, Cent. Eur. J. Chem. 7, 66 (2009) http://dx.doi.org/10.2478/s11532-008-0090-8[Crossref]
  • [31] M. Szabó, M. Manea, E. Orbán, A. Csámpai, S. Bősze, R. Szabó, M. Tejeda, D. Gaál, B. Kapuvári, M. Przybylski, F. Hudecz, G. Mező, Bioconjug. Chem. 20, 656 (2009) http://dx.doi.org/10.1021/bc800542u[Crossref]
  • [32] P. Roepstorff, J. Fohlman, Biomed. Mass Spectrom. 11, 601 (1984) http://dx.doi.org/10.1002/bms.1200111109[Crossref]
  • [33] H.J. Sterling, E.R. Williams, Anal. Chem. 82, 9050 (2010) http://dx.doi.org/10.1021/ac101957x[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-012-0130-2
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.