EN
The sorptive potential of some lignocellulosic agro-industrial wastes (sunflower seed shells and corn cob) for Basic Blue 9 cationic dye removal from aqueous solutions was examined using the batch technique. The Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models were used in order to determine the quantitative parameters of sorption. The Langmuir isotherm model indicated a maximum sorption capacity for these materials in the range of 40–50 mg dye per g (25°C), slightly higher for corn cob than for sunflower seed shells. The values of the thermodynamic parameters showed that the retention of cationic dye is a spontaneous and endothermic process. The application of pseudo-first order and pseudo-second order intraparticle diffusion models, and a Boyd - Reichenberg model for kinetic data interpretation suggested that sorption of Basic Blue 9 dye onto the studied materials is a process where both surface sorption and intraparticle diffusion contributed to the rate-limiting step. These lignocellulosic wastes can be used with good efficiency for dye removal from aqueous effluents. [...]