PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2007 | 5 | 4 | 970-980
Article title

Dopamine and iron mediated fragmentation of galactocerebroside and cardiolipin in micelles

Content
Title variants
Languages of publication
EN
Abstracts
EN
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and thin-layer chromatography (TLC) have been used to study dopamine and iron mediated free-radical transformation of lipids in their hydrophilic parts. It has been shown that the action of the dopamine/Fe2+ system on galactocerebroside or cardiolipin, which are the components of mixed micelles, results in formation of ceramide or phosphatidic acid and phosphatidylhydroxyacetone, respectively. These data, when combined with results obtained using the ascorbate/Fe2+/H2O2 oxidizing system with the same substrates, demonstrate that the formation of these products proceeds via an OH-radical induced fragmentation taking place in polar moiety of the starting lipids. [...]
Publisher

Journal
Year
Volume
5
Issue
4
Pages
970-980
Physical description
Dates
published
1 - 12 - 2007
online
1 - 12 - 2007
Contributors
author
  • Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya str. 14, 220050, Minsk, Belarus, yurkovail@tut.by
author
  • Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevicha str. 5/2, 220080, Minsk, Belarus
  • Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Härtelstr. 16-18, D-04107, Leipzig, Germany
author
  • Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya str. 14, 220050, Minsk, Belarus
References
  • [1] D.G. Graham, S.M. Tiffany, W.R. Bell Jr. and W.F. Gutknecht: ”Autoxidation versus covalent binding of quinones as the mechanisms of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C 1300 neuroblastoma cells invitro”, Mol. Pharmacol., Vol. 14, (1978), pp. 644–653.
  • [2] G. Rona: ”Catecholamines cardiotoxity”, J. Mol. Cell. Cardiol., Vol. 17, (1985), pp. 291–306. http://dx.doi.org/10.1016/S0022-2828(85)80130-9[Crossref]
  • [3] Y. Luo and G.S. Roth: ”The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration”, Antioxid. Redox Signal., Vol. 2, (2000), pp. 449–460. http://dx.doi.org/10.1089/15230860050192224[Crossref]
  • [4] A.H. Stokes, T.G. Hastings and K.E. Vrana: ”Cytotoxic and genotoxic potential of dopamine”, J. Neurosci. Res., Vol. 55, (1999), pp. 659–665. http://dx.doi.org/10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C[Crossref]
  • [5] Y. Luo, H. Umegaki, X. Wang, R. Abe and G.S. Roth: ”Dopamine induced apoptosis through an oxidation-involved SAPK/JNK activation pathway”, J. Biol. Chem., Vol. 273, (1998), pp. 3756–3764. http://dx.doi.org/10.1074/jbc.273.6.3756[Crossref]
  • [6] E. Pileblad, A. Slivka, D. Bratvold and G. Cohen: ”Studies on the autoxidation of dopamine: interaction with ascorbate”, ABB., Vol. 263, (1988), pp. 447–452.
  • [7] H.S. Maker, C. Weiss, D.J. Silides and G. Cohen: ”Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates”, J. Neurochem., Vol. 36, (1981), pp. 589–593. http://dx.doi.org/10.1111/j.1471-4159.1981.tb01631.x[Crossref]
  • [8] M. Tanaka, A. Sotomatsu, H. Kanai and S. Hirai: ”Dopa and dopamine cause cultured neuronal death in the presence of iron”, J. Neurol. Sci., Vol. 101, (1991), pp. 198–203. http://dx.doi.org/10.1016/0022-510X(91)90046-A[Crossref]
  • [9] M. Tanaka, T. Yoshida, K. Okamoto and S. Hirai: ”DopaminCent. Eur. J. Chem.e and DOPA cause release of iron from ferritin and lipid peroxidation of liposomes”, Neuroreport., Vol. 10, (1999), pp. 1883–1887. http://dx.doi.org/10.1097/00001756-199906230-00016[Crossref]
  • [10] C. Velez-Pardo, M.J. Jimenez Del Rio, G. Ebinger and G. Vauquelin: ”Monoamine and iron-related toxicity: from “serotonin-binding proteins” to lipid peroxidation and apoptosis in PC12 cells”, Gen. Pharmacol., Vol. 31, (1998), pp. 19–24.
  • [11] I.P. Edimicheva, M.A. Kisel, O.I. Shadyro, V.P. Vlasov and I.L. Yurkova: ”The damage to phospholipids caused by free radical attack on glycerol and sphingosine backbone”, Int. J. Radiat. Biol., Vol. 71, (1997), pp. 555–560. http://dx.doi.org/10.1080/095530097143888[Crossref]
  • [12] S.N. Mueller, R. Batra, M. Senn, B. Giese, M.A. Kisel and O.I. Shadyro: ”Chemistry of C-2 glycerol radicals: indications for a new mechanism of lipid damage”, J. Am. Chem. Soc., Vol. 119, (1997), pp. 2795–2803. http://dx.doi.org/10.1021/ja9641416[Crossref]
  • [13] O.I. Shadyro, I.L. Yurkova and M.A. Kisel: ”Radiation-induced peroxidation and fragmentation of lipids in a model membrane”, Int. J. Radiat. Biol., Vol. 78, (2002), pp. 211–217. http://dx.doi.org/10.1080/09553000110104065[Crossref]
  • [14] O.I. Shadyro, I.L. Yurkova, M.A. Kisel, O. Brede and J. Arnhold: ”Formation of phosphatidic acid, ceramide and diglyceride on radiolysis of lipids: Identification by MALDI-TOF mass spectrometry”, Free Radic. Biol. Med., Vol. 36, (2004), pp. 1612–1624. http://dx.doi.org/10.1016/j.freeradbiomed.2004.03.013[Crossref]
  • [15] I. Yurkova, M. Kisel, J. Arnhold and O. Shadyro: ”Free-radical fragmentation of galactocerebrosides: a MALDI-TOF mass spectrometry study”, Chem. Phys. Lipids, Vol. 134, (2005), pp. 41–49. http://dx.doi.org/10.1016/j.chemphyslip.2004.11.002[Crossref]
  • [16] I. Yurkova, M. Kisel, J. Arnhold and O. Shadyro: ”Iron-mediated free radical formation of signaling lipids in a model system”, Chem. Phys. Lipids, Vol. 137, (2005), pp. 29–37. http://dx.doi.org/10.1016/j.chemphyslip.2005.06.002[Crossref]
  • [17] G. Rouser, G. Kritchevsky and H. Yamamoto: ”Lipids in the nervous system”, Adv. Lipid Res., Vol. 10, (1972), pp. 261–360.
  • [18] S.F. Yang, S. Freer and A.A. Benson: ”Transphosphatidylation by phospholipase D”, J. Biol. Chem., Vol. 242, (1967), pp. 477–484.
  • [19] R. Pedrosa and P. Soares-da-Silva: ”Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine”, Br. J. Pharmacol., Vol. 137, (2002), pp. 1305–1313. http://dx.doi.org/10.1038/sj.bjp.0704982[Crossref]
  • [20] A. Klegeris, L.G. Korkina and S.A. Greenfield: ”Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions”, Free Radic Biol Med., Vol. 18, (1995), pp. 215–222. http://dx.doi.org/10.1016/0891-5849(94)00141-6[Crossref]
  • [21] J.P. Spencer, A. Jenner, J. Butler, O.I. Aruoma, D.T. Dexter, P. Jenner and B. Halliwell: ”Evaluation of the pro-oxidant and antioxidant actions of L-DOPA and dopamine in vitro”, Free Radic. Res., Vol. 24, (1996), pp. 95–105.
  • [22] A. Slivka and G. Cohen: ”Hydroxyl radical attack on dopamine”, J. Biol. Chem., Vol. 260, (1985), pp. 15466–15472.
  • [23] O.I. Shadyro, G.K. Glushonok, T.G. Glushonok, I.P. Edimicheva, A.G. Moroz, A.A. Sosnovskaya, I.L. Yurkowa and G.I. Polozov: ”Quinones as free-radical fragmentation inhibitors in biologically important molecules”, Free Radic. Res., Vol. 36, (2002), pp. 859–867. http://dx.doi.org/10.1080/1071576021000005294[Crossref]
  • [24] B.J. Pettus, C.E. Chalfant and Y.A. Hannun: ”Ceramide in apoptosis: an overview and current perspectives”, Biochim. Biophys. Acta, Vol. 1585, (2002), pp. 114–125.
  • [25] D. English, Y. Cui and R.A. Siddiqui: ”Messenger functions of phosphatidic acid”, Chem. Phys. Lipids, Vol. 80, (1996), pp. 117–132. http://dx.doi.org/10.1016/0009-3084(96)02549-2[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11532-007-0041-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.