Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 2 | 299-316

Article title

Formation and multinuclear magnetic resonance investigation of silylammonium tetracarbonylcobaltate contact ion pairs


Title variants

Languages of publication



Silylcobalt tetracarbonyls were reacted with various amines (B) in non-polar solvents to form silylammonium tetracarbonylcobaltate contact ion pairs formulated as [BSiR3+, −Co(CO)4]. The compounds were characterized by IR and multinuclear magnetic resonance spectroscopy both in solution and in solid state. Their properties are analogous to the known ion pairs [BH+, −Co(CO)4] and to amine adducts of halosilanes as well.










Physical description


1 - 6 - 2006
1 - 6 - 2006


  • Research Group for Petrochemistry, Hungarian Academy of Sciences, H-8200, Veszprém, Hungary
  • Department of Silicate and Materials Engineering, NMR laboratory, University of Veszprém, H-8200, Veszprém, Hungary


  • [1] B.T. Carter, M.P. Castellani, A.L. Rheingold, S. Hwang, S.E. Longacre, and M.G. Richmond: “Ion-pairing themodynamics for (η 5-pentadienyl)Fe(CO) 2− (pentadienyl = MeCp, C5Me5, C5Ph5, C9H7) and X-ray crystal structure of [(η 5-C5Ph5)Fe(CO)2][PPN]”, Organometallics, Vol. 21, (2002), pp. 373–379 and refs. therein. http://dx.doi.org/10.1021/om0107340[Crossref]
  • [2] W. Edgell and S. Chanjamrsi: “Studies of solution character by molecular-spectroscopy. 8. Ion sites in solutions of NaCo(CO)4 in several solvents doped with cryptand-C221”, J. Am. Chem. Soc., Vol. 102, (1980), pp. 147–155 and refs. therein. http://dx.doi.org/10.1021/ja00521a026
  • [3] P.S. Braterman and A.E. Leslie: “Strong interaction between [Co(CO)4]− and Li+ or Na+ in diethyl ether; The system LiBr2/Co2(CO)8/diethyl ether”, J. Organomet. Chem., Vol. 214, (1982), pp. C45–C49.
  • [4] F. Haász, T. Bartik, V. Galamb and G. Pályi: “Alkylcobalt carbonyls 10. CO activation and phase-transfer-active coordination sites in organocobalt carbonyls - mechanism of the reaction of benzyl halides and tetracarbonylcobaltate(-I)”, Organometallics, Vol. 9, (1990), pp. 2773–2779.
  • [5] C. Zucchi, G. Pályi, V. Galamb, E. Sámpár-Szerencsés, L. Markó, P. Li and H. Alper: “Cobalt-catalyzed carbonylation of benzyl halides using polyethylene glycols as phase-transfer catalysts”, Organometallics, Vol. 15, (1996), pp. 3222–3231. http://dx.doi.org/10.1021/om950575i[Crossref]
  • [6] F. Calderazzo, G. Fachinetti, F. Marchetti and P.F. Zanazzi: “Preparation and crystal and molecular-structure of two trialkylamine adducts of HCo(CO)4 showing a preferential NR3H+ ...[(OC)3Co(CO)]− interaction”, J. Chem. Soc. Chem. Comm., (1981), pp. 181–183. [Crossref]
  • [7] L. Brammer, J.C. Mareque Rivas and C.D. Spilling: “An intramolecular N-H...Co hydrogen bond and a structure correlation study of the pathway for protonation of the Co(CO)3L− anion (L = CO, PR3)”, J. Organomet. Chem., Vol. 609, (2000), pp 36–43 and refs. therein. http://dx.doi.org/10.1016/S0022-328X(00)00377-6[Crossref]
  • [8] D. Zhao, F.T. Ladipo, J. Braddock-Wilking and L. Brammer: “Strengthening of N-H...Co hydrogen bonds upon increasing the basicity of the hydrogen bond acceptor (Co)”, Organometallics, Vol. 15, (1996), pp. 1441–1445. http://dx.doi.org/10.1021/om950777e[Crossref]
  • [9] T. Bartik, T. Krummling, B. Happ, A. Sieker, L. Markó, R. Boese, R. Ugo, C. Zucchi and G. Pályi: “Intermediates and isomers in the substitution of cobalt carbonyl hydride with tertiary phosphorus ligands”, Catal. Lett., Vol. 19, (1993), pp. 383–389 http://dx.doi.org/10.1007/BF00767082[Crossref]
  • [10] B.J. Aylett and J.M. Campbell: “Silylmanganese pentacarbonyl; the nature of the adducts of silyl compounds with tertiary amines”, J. Chem. Soc. Chem. Comm., (1967), p. 159.
  • [11] J.F. Bald and A.G. MacDiarmid: “Silylammonium and silylphosphonium compounds by the reaction of amines and phosphines with silylcobalt tetracarbonyl”, J. Organomet. Chem., Vol. 22, (1970), pp. C22–C24. http://dx.doi.org/10.1016/S0022-328X(00)86038-6[Crossref]
  • [12] A. Sisak, F. Ungváry and L. Markó: “Kinetics and mechanism of the silation of dicobalt octacarbonyl by hydrosilanes. Effect of Lewis-bases on the reaction”, Organometallics, Vol. 5, (1986), pp. 1019–1023. http://dx.doi.org/10.1021/om00136a031[Crossref]
  • [13] A. Sisak, L. Markó, Z. Angyalosy and F. Ungváry: “Catalytic hydrosilylation of carbon monoxide with cobalt carbonyls”, Inorg. Chim. Acta, Vol. 222, (1994), pp. 131–134. http://dx.doi.org/10.1016/0020-1693(94)03902-X[Crossref]
  • [14] A. Sisak: “Silylations of α,β-unsaturated and aromatic carbonyl compounds with cobalt carbonyls”, J. Organomet. Chem.y, Vol. 586, (1999), pp. 48–53.
  • [15] Y. Seki, S. Murai, I. Yamamoto and N. Sonoda: “Transition-metal reactions of silanes. 3. Co2(CO)8 catalyzed reactions of cyclic ethers with hydrosilanes and carbon-monoxide”, Angew. Chem. Int. Edit., Vol. 16, (1977), p. 789. [Crossref]
  • [16] B.K. Nicholson and J. Simpson: “Reactions of tetracarbonylcobaltate(-I) with chlorosilanes in ether solvents”, J. Organomet. Chem., Vol. 155, (1978), pp. 237–244. http://dx.doi.org/10.1016/S0022-328X(00)93296-0[Crossref]
  • [17] A. Sisak, F. Ungváry and L. Markó: “Base-catalyzed reactions of cobalt carbonyls related to hydroformylation”, Acta Chim. Hung., Vol. 119, (1985), pp. 115–125.
  • [18] W.J. Geary: “The use of conductivity measurements in organic solvents for the characterization of coordination compounds”, Coordin. Chem. Rev., Vol. 7, (1971), pp. 81–122.
  • [19] R.J. LeSuer, C. Buttolph and W.E. Geiger: “Comparison of the conductivity properties of the tetrabutylammonium salt of tetrakis(pentafluorophenyl)borate anion with those of traditional supporting electrolyte anions in nonaqueous solvents”, Anal. Chem., Vol. 76, (2004), pp. 6395–6401.
  • [20] C.H. Wei, T.M. Bockman and J.K. Kochi: “Charge-transfer salts of carbonylmetallates as outer-sphere ion-pairs in photochemical and thermal electron-transfer”, J. Organomet. Chem., Vol. 428, (1992), pp. 85–87. http://dx.doi.org/10.1016/0022-328X(92)83221-3[Crossref]
  • [21] F. Calderazzo, G. Pampaloni, M. Lanfranchi and G. Pelizzi: “Proton-mediated and carbonyl-mediated electron-transfer processes from the hexacarbonylvanadate(-1) anion”, J. Organomet. Chem., Vol. 296, (1985), pp. 1–13.
  • [22] A. Sisak and L. Markó: “Mechanistic studies on the reactions of dicobalt octacarbonyl with hard Lewis bases”, J. Organomet. Chem., Vol. 330, (1987), pp. 201–206 and refs therein. http://dx.doi.org/10.1016/0022-328X(87)80288-7[Crossref]
  • [23] T.D. Tilley: “Transition-metal silyl derivatives”, In: S. Patai and Z. Rappoport (Eds.): The Chemistry of Organic Silicon Compounds, J. Wiley, New York, 1989, pp. 1442–1444 and refs. therein.
  • [24] B.T. Gregg and A.R. Cutler: “Reactivity of cobalt acetyl complexes (PR3)(CO)3CoCOCH3 toward monohydrosilanes”, Organometallics, Vol. 11, (1992), pp. 4276–4284. http://dx.doi.org/10.1021/om00060a053[Crossref]
  • [25] R.K. Harris and A.C. Olivieri: “Quadrupolar effects transferred to spin-1/2 magicangle spinning spectra of solids”, Prog. Nucl. Mag. Res. Sp., Vol. 24, (1992), pp. 435–456.
  • [26] R.K. Harris and B.E. Mann: NMR and the Periodic Table, Academic Press, London, 1978.
  • [27] J. Kreisz, A. Sisak, F. Ungváry and L. Markó: “Reaction of silylcobalt tetracarbonyls with oxiranes. Kinetics and mechanism”, J. Organomet. Chem., Vol. 451, (1993), pp. 53–57. http://dx.doi.org/10.1016/0022-328X(93)83007-I[Crossref]
  • [28] I. Kovács, A. Sisak, F. Ungváry and L. Markó: “On the mechanism of the formation of silyl enol ethers from hydrosilanes and organic carbonyl compounds in the presence of cobalt carbonyls. Kinetic investigation of some reaction steps”, Organometallics, Vol. 7, (1988), pp. 1025–1028. [Crossref]
  • [29] T. Murai, F. Yasui, S. Kato, Y. Hatayama, S. Suzuki, Y. Seki, Y. Yamasaki, N. Sonoda, H. Kurosawa, Y. Kawasaki and S. Murai: “Cobalt carbonyl catalyzed reactions of cyclic ethers with a hydrosilane and carbon-monoxide - a new synthetic reaction equivalent to nucleophilic oxymethylation”, J. Am. Chem. Soc., Vol. 111, (1989), pp. 7938–7946. http://dx.doi.org/10.1021/ja00202a040[Crossref]
  • [30] M. Allmendinger, M. Zintl, R. Eberhardt, G.A. Luinstra, F. Molnar and B. Rieger: “Online ATR-IR investigations and mechanistic understanding of the carbonylation of epoxides - the selective synthesis of lactones or polyesters from epoxides and CO”, J. Organomet. Chem., Vol. 689, (2004), pp. 971–979. http://dx.doi.org/10.1016/j.jorganchem.2003.12.030[Crossref]
  • [31] J.E. Ellis: “Reactivity patterns of metal-carbonyl anions and their derivatives”, J. Organomet. Chem., Vol. 86, (1975), pp. 1–56. http://dx.doi.org/10.1016/S0022-328X(00)88511-3[Crossref]
  • [32] R.J.P. Corriu: “Hypervalent species of silicon - structure and reactivity”, J. Organomet. Chem., Vol. 400, (1990), pp. 81–106 and refs. therein. http://dx.doi.org/10.1016/0022-328X(90)83007-7[Crossref]
  • [33] J.J. Delpuech: Dynamics of Solutions and Fluid Mixtures, J. Wiley, Chichester, 1995, chapter 3.
  • [34] A.R. Bassindale, M. Borbaruah, S.J. Glynn, D.J. Parker and P.G. Taylor: “Modelling nucleophilic substitution at silicon using hypervalent silicon compounds based on di and tri halosilanes”, J. Organomet. Chem., Vol. 606, (2000), pp. 125–131 and refs. therein. http://dx.doi.org/10.1016/S0022-328X(00)00263-1[Crossref]
  • [35] J.M. Geller, J.H. Wosnick, I.S. Butler, D.F.R. Gilson, F.G. Morin and F. Belanger-Gariepy: “X-ray diffraction, Raman spectroscopic, and solid-state NMR studies of the group 14 metal(tetracarbonyl)cobalt complexes Ph3MCo(CO)4 (M = Si, Sn, Pb)”, Can. J. Chem., Vol. 80, (2002), pp. 813–820. http://dx.doi.org/10.1139/v02-110[Crossref]
  • [36] R.J. Klingler and J.W. Rathke: “High-pressure NMR investigation of hydrogen-atom transfer and related dynamic processes in oxo catalysis”, J. Am. Chem. Soc., Vol. 116, (1996), pp. 4772–4278.
  • [37] W.V. Philipsborn: “Transition metal NMR spectroscopy - a probe into organometallic structure and catalysis”, Pure Appl. Chem., Vol. 58, (1986), p. 513.
  • [38] A.J. Chalk and J.F. Harrod: “Homogeneous catalysis IV. Some reactions of silicon hydrides in the presence of cobalt carbonyls”, J. Am. Chem. Soc., Vol. 89, (1967), pp. 1640–1647. http://dx.doi.org/10.1021/ja00983a020[Crossref]
  • [39] C.A. Bruynes and T.K. Jurriens: “Catalysts for silylations with 1,1,1,3,3,3-hexamethyldisilazane”, J. Org. Chem., Vol. 47, (1982), pp. 3966–3969. http://dx.doi.org/10.1021/jo00141a031[Crossref]
  • [40] W.L.F. Armarego and D.D. Perrin: Purification of Laboratory Chemicals, Butterworth, Oxford, 1996.
  • [41] I. Kovács, F. Ungváry and L. Markó: “Kinetic investigation of the cleavage of normalbutyrylcobalt or isobutyrylcobalt tetracarbonyl with hydridocobalt tetracarbonyl or dihydrogen”, Organometallics, Vol. 5, (1986), pp. 209–215. [Crossref]
  • [42] The Aldrich Library of 13C and 1H FT NMR Spectra, Aldrich Chemical Company, 1995.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.