Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Techniques for Production of Large Area Graphene
for Electronic and Sensor Device Applications


Title variants

Languages of publication



Here we review commonly used techniques for
the production of large area and high quality graphene
to meet the requirements of industrial applications, including
epitaxial growth on SiC, chemical vapour deposition
(CVD) on transition metals and growth from solid carbon
source. The review makes a comparison of the growth
mechanisms, quality (such as mobility and homogeneity)
and properties of the resultant graphene, limitations and
the prospect of each production method. A particular focus
of the review is on direct (transfer free) growth on dielectric
substrate as this is potentially one of the promising
techniques for graphene production which can readily
be integrated into existing semiconductor fabrication processes.








Physical description


1 - 1 - 2014
12 - 11 - 2014
17 - 2 - 2014
2 - 10 - 2014


  • Wolfson Nanomaterials and Devices Laboratory,
    School of Computing and Mathematics, Faculty of Science
  • Centre for Research in Translational Biomedicine, Plymouth
    University, Plymouth, Devon, PL4 8AA, UK
  • Wolfson Nanomaterials and Devices Laboratory,
    School of Computing and Mathematics, Faculty of Science
  • Centre for Research in Translational Biomedicine, Plymouth
    University, Plymouth, Devon, PL4 8AA, UK
  • Centre for Research in Translational Biomedicine, Plymouth
    University, Plymouth, Devon, PL4 8AA, UK
  • Cambridge Graphene Centre, Department of Engineering, University
    of Cambridge, CB3 0FA, UK
  • Centre for Research in Translational Biomedicine, Plymouth
    University, Plymouth, Devon, PL4 8AA, UK


  • [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., "Electric Field Effect in Atomically Thin CarbonFilms," Science, vol. 306, pp. 666-669, October 22, 20042004.
  • [2] A. K. Geim and K. S. Novoselov, "The rise of graphene," NatMater, vol. 6, pp. 183-191, 2007.[Crossref]
  • [3] AlexanderAlUS. (2010). The ideal crystalline structure ofgraphene is a hexagonal grid. Available: http://en.wikipedia.org/wiki/File:Graphen.jpg
  • [4] K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, M. C.Downer, et al., "Ultrafast Relaxation Processes of Hot Carriersin Graphite," in Ultrafast Phenomena VII. vol. 53, C. Harris, E.Ippen, G. Mourou, and A. Zewail, Eds., ed: Springer Berlin Heidelberg,1990, pp. 303-305.
  • [5] K. Andre and K. Philip, "Carbon Wonderland," Scientific American,vol. 298, pp. 90-97, 2008.
  • [6] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg,J. Hone, et al., "Ultrahigh electron mobility in suspendedgraphene," Solid State Communications, vol. 146, pp. 351-355,2008.
  • [7] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsicand extrinsic performance limits of graphene deviceson SiO2," Nat Nano, vol. 3, pp. 206-209, 2008.
  • [8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson,I. V. Grigorieva, et al., "Two-dimensional gas ofmasslessDirac fermions in graphene," Nature, vol. 438, pp. 197-200, 11/10/print 2005.
  • [9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,and A. K. Geim, "The electronic properties of graphene," Reviewsof Modern Physics, vol. 81, p. 109, 2009.[Crossref]
  • [10] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimentalobservation of the quantum Hall effect and Berry’s phase ingraphene," Nature, vol. 438, pp. 201-204, 2005.
  • [11] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich,S. V. Morozov, et al., "Two-dimensional atomic crystals,"Proceedings of the National Academy of Sciences of the UnitedStates of America, vol. 102, pp. 10451-10453, July 26, 20052005.
  • [12] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al.,"Electronic Confinement and Coherence in Patterned EpitaxialGraphene," Science, vol. 312, pp. 1191-1196, May 26, 20062006.
  • [13] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,"Controlling the Electronic Structure of Bilayer Graphene," Science,vol. 313, pp. 951-954, August 18, 2006 2006.
  • [14] C. Jia, J. Jiang, L. Gan, and X. Guo, "Direct Optical Characterizationof Graphene Growth and Domains on Growth Substrates,"Sci. Rep., vol. 2, 2012.
  • [15] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement ofthe Elastic Properties and Intrinsic Strength of MonolayerGraphene," Science, vol. 321, pp. 385-388, July 18, 2008 2008.
  • [16] C.-Y. Su, A.-Y. Lu, C.-Y.Wu, Y.-T. Li, K.-K. Liu,W. Zhang, et al., "DirectFormation ofWafer Scale Graphene Thin Layers on InsulatingSubstrates by Chemical Vapor Deposition," Nano Letters,vol. 11, pp. 3612-3616, 2011/09/14 2011.[Crossref]
  • [17] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al.,"Large-scale pattern growth of graphene films for stretchabletransparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
  • [18] H. J. Park, J. Meyer, S. Roth, and V. Skákalová, "Growth andproperties of few-layer graphene prepared by chemical vapordeposition," Carbon, vol. 48, pp. 1088-1094, 2010.[Crossref]
  • [19] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. vanWees, "Electronic spin transport and spin precession in singlegraphene layers at room temperature," Nature, vol. 448, pp. 571-574, 2007.
  • [20] X.Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H.Wang, et al., "NDopingof Graphene Through Electrothermal Reactions withAmmonia," Science, vol. 324, pp. 768-771, May 8, 2009 2009.
  • [21] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, etal., "Ultrathin Epitaxial Graphite: 2D Electron Gas Propertiesand a Route toward Graphene-based Nanoelectronics," TheJournal of Physical Chemistry B, vol. 108, pp. 19912-19916,2004/12/01 2004.[Crossref]
  • [22] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J. R. Gong, "ControllableN-Doping of Graphene," Nano Letters, vol. 10, pp. 4975-4980, 2010/12/08 2010.[Crossref]
  • [23] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphenephotonics and optoelectronics," Nat Photon, vol. 4, pp. 611-622, 2010.[Crossref]
  • [24] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans,"Organic solar cells with solution-processed graphene transparentelectrodes," Applied Physics Letters, vol. 92, pp. -,2008.
  • [25] Q. Lu, X. Dong, L.-J. Li, and X. Hu, "Direct electrochemistrybasedhydrogen peroxide biosensor formed from single-layergraphene nanoplatelet–enzyme composite film," Talanta, vol.82, pp. 1344-1348, 2010.[Crossref]
  • [26] N. Mohanty and V. Berry, "Graphene-Based Single-BacteriumResolution Biodevice and DNA Transistor: InterfacingGraphene Derivatives with Nanoscale and Microscale Biocomponents,"Nano Letters, vol. 8, pp. 4469-4476, 2008/12/102008.[Crossref]
  • [27] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors," Nano Letters, vol. 8, pp. 3498-3502,2008/10/08 2008.[Crossref]
  • [28] Y.-W. Son, M. L. Cohen, and S. G. Louie, "Half-metallicgraphene nanoribbons," Nature, vol. 444, pp. 347-349, 2006.
  • [29] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, "Spinqubits in graphene quantum dots," Nat Phys, vol. 3, pp. 192-196, 2007.[Crossref]
  • [30] T. Yokoyama, "Controllable spin transport in ferromagneticgraphene junctions," Physical Review B, vol. 77, p. 073413,2008.[Crossref]
  • [31] V. Fal’ko, "Graphene: Quantum information on chicken wire,"Nat Phys, vol. 3, pp. 151-152, 2007.
  • [32] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, andA. C. Ferrari, "Production and processing of graphene and 2dcrystals," Materials Today, vol. 15, pp. 564-589, 12// 2012.[Crossref]
  • [33] A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, "LEED andAuger electron observations of the SiC(0001) surface," SurfaceScience, vol. 48, pp. 463-472, 1975.
  • [34] I. Forbeaux, J. M. Themlin, A. Charrier, F. Thibaudau, and J.M. Debever, "Solid-state graphitization mechanisms of siliconcarbide 6H–SiC polar faces," Applied Surface Science, vol.162–163, pp. 406-412, 2000.
  • [35] I. Forbeaux, J. M. Themlin, and J. M. Debever, "Heteroepitaxialgraphite on 6H-SiC(0001): Interface formation throughconduction-band electronic structure," Physical Review B, vol.58, pp. 16396-16406, 1998.
  • [36] P. Sutter, "Epitaxial graphene: How silicon leaves the scene,"Nat Mater, vol. 8, pp. 171-172, 2009.[Crossref]
  • [37] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li,et al., "Epitaxial graphene," Solid State Communications, vol.143, pp. 92-100, 2007.
  • [38] N. Srivastava, H. Guowei, Luxmi, P. C. Mende, R. M. Feenstra,and S. Yugang, "Graphene formed on SiC under variousenvironments: comparison of Si-face and C-face," Journal ofPhysics D: Applied Physics, vol. 45, p. 154001, 2012.[Crossref]
  • [39] K. V. Emtsev, T. Seyller, L. Ley, A. Tadich, L. Broekman, J. D.Riley, et al., "Electronic properties of clean unreconstructed6H–SiC(0 0 0 1) surfaces studied by angleresolved photoelectron spectroscopy," Surface Science, vol.600, pp. 3845-3850, 2006.
  • [40] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley,et al., "Towards wafer-size graphene layers by atmosphericpressure graphitization of silicon carbide," Nat Mater, vol. 8,pp. 203-207, 2009.[Crossref]
  • [41] C. Riedl, C. Coletti, and U. Starke, "Structural and electronicproperties of epitaxial graphene on SiC(0?0?0?1): a review ofgrowth, characterization, transfer doping and hydrogen intercalation,"Journal of Physics D: Applied Physics, vol. 43, p.374009, 2010.
  • [42] G. G. Jernigan, B. L. VanMil, J. L. Tedesco, J. G. Tischler, E. R.Glaser, A. Davidson, et al., "Comparison of Epitaxial Grapheneon Si-face and C-face 4H SiC Formed by Ultrahigh Vacuum andRF Furnace Production," Nano Letters, vol. 9, pp. 2605-2609,2009/07/08 2009.[Crossref]
  • [43] F. Schwierz, "Graphene transistors," Nat Nano, vol. 5, pp. 487-496, 2010.[Crossref]
  • [44] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.Chiu, A. Grill, et al., "100-GHz Transistors fromWafer-Scale EpitaxialGraphene," Science, vol. 327, p. 662, February 5, 20102010.
  • [45] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric,Y. Sun, et al., "Wafer-Scale Graphene Integrated Circuit," Science,vol. 332, pp. 1294-1297, June 10, 2011 2011.
  • [46] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-AreaSynthesis of High-Quality and Uniform Graphene Films on CopperFoils," Science, vol. 324, pp. 1312-1314, June 5, 2009 2009.
  • [47] Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, et al.,"Wafer-Scale Synthesis and Transfer of Graphene Films," NanoLetters, vol. 10, pp. 490-493, 2010/02/10 2010.[Crossref]
  • [48] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution ofGraphene Growth on Ni and Cu by Carbon Isotope Labeling,"Nano Letters, vol. 9, pp. 4268-4272, 2009/12/09 2009.[Crossref]
  • [49] S. Lee, K. Lee, and Z. Zhong, "Wafer Scale Homogeneous BilayerGraphene Films by Chemical Vapor Deposition," NanoLetters, vol. 10, pp. 4702-4707, 2010/11/10 2010.[Crossref]
  • [50] C. Vo-Van, A. Kimouche, A. Reserbat-Plantey, O. Fruchart, P.Bayle-Guillemaud, N. Bendiab, et al., "Epitaxial graphene preparedby chemical vapor deposition on single crystal thin iridiumfilms on sapphire," Applied Physics Letters, vol. 98, p.181903, 2011.[Crossref]
  • [51] Y. Miyasaka, A. Nakamura, and J. Temmyo, "Graphite ThinFilms Consisting of Nanograins ofMultilayer Graphene on SapphireSubstrates Directly Grown by Alcohol Chemical VaporDeposition," Japanese Journal of Applied Physics, vol. 50, p.04DH12, 2011.[Crossref]
  • [52] G. Alexander, K. Kurt, and V. V. Denis, "Dynamics of graphenegrowth on a metal surface: a time-dependent photoemissionstudy," New Journal of Physics, vol. 11, p. 073050, 2009.
  • [53] M. E. Ramón, A. Gupta, C. Corbet, D. A. Ferrer, H. C. P. Movva,G. Carpenter, et al., "CMOS-Compatible Synthesis of Large-Area, High-Mobility Graphene by Chemical Vapor Deposition of Acetylene on Cobalt Thin Films," ACS Nano, vol. 5, pp. 7198-7204, 2011/09/27 2011.[Crossref]
  • [54] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei,"Graphene segregated on Ni surfaces and transferred to insulators,"Applied Physics Letters, vol. 93, p. 113103, 2008.[Crossref]
  • [55] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, et al., "LargeArea, Few-Layer Graphene Films on Arbitrary Substrates byChemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35,2009/01/14 2008.
  • [56] P.W. Sutter, J.-I. Flege, and E. A. Sutter, "Epitaxial graphene onruthenium," Nat Mater, vol. 7, pp. 406-411, 2008.[Crossref]
  • [57] E. Sutter, P. Albrecht, and P. Sutter, "Graphene growth on polycrystallineRu thin films," Applied Physics Letters, vol. 95, p.133109, 2009.[Crossref]
  • [58] P.W. Sutter, P. M. Albrecht, and E. A. Sutter, "Graphene growthon epitaxial Ru thin films on sapphire," Applied Physics Letters,vol. 97, p. 213101, 2010.[Crossref]
  • [59] J. Coraux, A. T. N‘Diaye, C. Busse, and T. Michely, "StructuralCoherency of Graphene on Ir(111)," Nano Letters, vol. 8, pp.565-570, 2008/02/01 2008.
  • [60] T. Oznuluer, E. Pince, E. O. Polat, O. Balci, O. Salihoglu, andC. Kocabas, "Synthesis of graphene on gold," Applied PhysicsLetters, vol. 98, pp. 183101-183101-3, 2011.[Crossref]
  • [61] B. J. Kang, J. H. Mun, C. Y. Hwang, and B. J. Cho, "Monolayergraphene growth on sputtered thin film platinum," Journal ofApplied Physics, vol. 106, p. 104309, 2009.[Crossref]
  • [62] E. V. Rut’kov, A. V. Kuz’michev, and N. R. Gall’, "Carbon interactionwith rhodium surface: Adsorption, dissolution, segregation,growth of graphene layers," Physics of the Solid State,vol. 53, pp. 1092-1098, 2011/05/01 2011.
  • [63] S. Roth, J. Osterwalder, and T. Greber, "Synthesis of epitaxialgraphene on rhodium from 3-pentanone," Surface Science,vol. 605, pp. L17-L19, 2011.
  • [64] S.-Y. Kwon, C. V. Ciobanu, V. Petrova, V. B. Shenoy, J. Bareño, V.Gambin, et al., "Growth of Semiconducting Graphene on Palladium,"Nano Letters, vol. 9, pp. 3985-3990, 2009/12/09 2009.[Crossref]
  • [65] Y.Murata, S. Nie, A. Ebnonnasir, E. Starodub, B. B. Kappes, K. F.McCarty, et al., "Growth structure and work function of bilayergraphene on Pd(111)," Physical Review B, vol. 85, p. 205443,2012.
  • [66] H. An, W.-J. Lee, and J. Jung, "Graphene synthesis on Fe foilusing thermal CVD," Current Applied Physics, vol. 11, pp. S81-S85, 2011.
  • [67] P. R. Somani, S. P. Somani, and M. Umeno, "Planer nanographenesfrom camphor by CVD," Chemical Physics Letters,vol. 430, pp. 56-59, 2006.
  • [68] J. H. Hafner, C. L. Cheung, and C. M. Lieber, "Growth of nanotubesfor probe microscopy tips," Nature, vol. 398, pp. 761-762, 1999.
  • [69] T. Land, T. Michely, R. Behm, J. Hemminger, and G. Comsa,"STM investigation of single layer graphite structures producedon Pt (111) by hydrocarbon decomposition," Surface Science,vol. 264, pp. 261-270, 1992.
  • [70] A. Nagashima, K. Nuka, H. Itoh, T. Ichinokawa, C. Oshima, andS. Otani, "Electronic states of monolayer graphite formed onTiC (111) surface," Surface Science, vol. 291, pp. 93-98, 1993.
  • [71] Z. Li, P.Wu, c.Wang, X. Fan,W. Zhang, X. Zhai, et al., "ChemicalVapor Deposition Growth of Graphene using Other HydrocarbonSources," 2011.
  • [72] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han,et al., "Graphene Films with Large Domain Size by a Two-StepChemical Vapor Deposition Process," Nano Letters, vol. 10, pp.4328-4334, 2010/11/10 2010.[Crossref]
  • [73] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M.Zheng, A. Javey, et al., "Direct Chemical Vapor Deposition ofGraphene on Dielectric Surfaces," Nano Letters, vol. 10, pp.1542-1548, 2010/05/12 2010.[Crossref]
  • [74] L. G. De Arco, Z. Yi, A. Kumar, and Z. Chongwu, "Synthesis,Transfer, and Devices of Single- and Few-Layer Graphene byChemical Vapor Deposition," Nanotechnology, IEEE Transactionson, vol. 8, pp. 135-138, 2009.
  • [75] J. Hamilton and J. Blakely, "Carbon segregation to single crystalsurfaces of Pt, Pd and Co," Surface Science, vol. 91, pp. 199-217, 1980.[Crossref]
  • [76] M. Eizenberg and J. Blakely, "Carbon monolayer phase condensationon Ni (111)," Surface Science, vol. 82, pp. 228-236,1979.
  • [77] F. Himpsel, K. Christmann, P. Heimann, D. Eastman, and P. J.Feibelman, "Adsorbate band dispersions for C on Ru (0001),"Surface Science Letters, vol. 115, pp. L159-L164, 1982.
  • [78] N. A. Kholin, E. V. Rut’kov, and A. Y. Tontegode, "The natureof the adsorption bond between graphite islands and iridiumsurface," Surface Science, vol. 139, pp. 155-172, 1984.
  • [79] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. Dresselhaus, J.Schaefer, et al., "Growth of large-area single- and Bi-layergraphene by controlled carbon precipitation on polycrystallineNi surfaces," Nano Research, vol. 2, pp. 509-516, 2009/06/012009.[Crossref]
  • [80] H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, et al.,"Controllable synthesis of submillimeter single-crystal monolayergraphene domains on copper foils by suppressing nucleation,"Journal of the American Chemical Society, vol. 134, pp.3627-3630, 2012.
  • [81] Y. Zhang, L. Gomez, F. N. Ishikawa, A.Madaria, K. Ryu, C.Wang,et al., "Comparison of Graphene Growth on Single-Crystallineand Polycrystalline Ni by Chemical Vapor Deposition," TheJournal of Physical Chemistry Letters, vol. 1, pp. 3101-3107,2010/10/21 2010.[Crossref]
  • [82] Z. Luo, Y. Lu, D.W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith,et al., "Effect of Substrate Roughness and FeedstockConcentration on Growth of Wafer-Scale Graphene at AtmosphericPressure," Chemistry of Materials, vol. 23, pp. 1441-1447, 2011/03/22 2011.[Crossref]
  • [83] C. Wang, W. Chen, C. Han, G. Wang, B. Tang, C. Tang, et al.,"Growth of Millimeter-Size Single Crystal Graphene on Cu Foilsby Circumfluence Chemical Vapor Deposition," Sci. Rep., vol.4, 04/01/online 2014.
  • [84] S. Chen, H. Ji, H. Chou, Q. Li, H. Li, J.W. Suk, et al., "Millimeter-Size Single-Crystal Graphene by Suppressing EvaporativeLoss of Cu During Low Pressure Chemical Vapor Deposition,"Advanced Materials, vol. 25, pp. 2062-2065, 2013.[Crossref]
  • [85] C. S. Ruiz-Vargas, H. L. Zhuang, P. Y. Huang, A. M. vander Zande, S. Garg, P. L. McEuen, et al., "Softened ElasticResponse and Unzipping in Chemical Vapor DepositionGraphene Membranes," Nano Letters, vol. 11, pp. 2259-2263,2011/06/08 2011.[Crossref]
  • [86] Y. Zhang, T. Gao, Y. Gao, S. Xie, Q. Ji, K. Yan, et al., "Defect-likeStructures of Graphene on Copper Foils for Strain Relief Investigatedby High-Resolution Scanning Tunneling Microscopy,"ACS Nano, vol. 5, pp. 4014-4022, 2011/05/24 2011.[Crossref]
  • [87] N. Liu, Z. Pan, L. Fu, C. Zhang, B. Dai, and Z. Liu, "The origin ofwrinkles on transferred graphene," Nano Research, vol. 4, pp.996-1004, 2011/10/01 2011.[Crossref]
  • [88] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono,N. Umezu, et al., "Production of a 100-m-long high-qualitygraphene transparent conductive film by roll-to-roll chemicalvapor deposition and transfer process," Applied Physics Letters,vol. 102, pp. -, 2013.[Crossref]
  • [89] C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng,et al., "Ultrathin epitaxial graphite: 2D electron gas propertiesand a route toward graphene-based nanoelectronics," Journalof Physical Chemistry B, vol. 108, pp. 19912-19916, Dec 302004.[Crossref]
  • [90] Z.-Y. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K.-C. Leou, F.-R. Chen,et al., "Graphene synthesis by chemical vapor deposition andtransfer by a roll-to-roll process," Carbon, vol. 48, pp. 3169-3174, 2010.[Crossref]
  • [91] A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, etal., "Transferring and Identification of Single- and Few-LayerGraphene on Arbitrary Substrates," The Journal of PhysicalChemistry C, vol. 112, pp. 17741-17744, 2008/11/20 2008.[Crossref]
  • [92] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al., "Roll-torollproduction of 30-inch graphene films for transparent electrodes,"Nat Nano, vol. 5, pp. 574-578, 2010.[Crossref]
  • [93] X. Li, Y. Zhu,W. Cai, M. Borysiak, B. Han, D. Chen, et al., "Transferof Large-Area Graphene Films for High-Performance TransparentConductive Electrodes," Nano Letters, vol. 9, pp. 4359-4363, 2009/12/09 2009.[Crossref]
  • [94] J. Kang, H. Kim, K. S. Kim, S.-K. Lee, S. Bae, J.-H. Ahn, etal., "High-performance graphene-based transparent flexibleheaters," Nano Letters, vol. 11, pp. 5154-5158, 2011.[Crossref]
  • [95] Y.-Y. Lee, K.-H. Tu, C.-C. Yu, S.-S. Li, J.-Y. Hwang, C.-C. Lin,et al., "Top Laminated Graphene Electrode in a SemitransparentPolymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method," ACS Nano, vol. 5, pp. 6564-6570,2011/08/23 2011.[Crossref]
  • [96] N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, "Alife cycle analysis of polymer solar cell modules prepared usingroll-to-roll methods under ambient conditions," Solar EnergyMaterials and Solar Cells, vol. 95, pp. 1293-1302, 2011.[Crossref]
  • [97] S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, et al.,"Synthesis and Characterization of Large-Area Graphene andGraphite Films on Commercial Cu–Ni Alloy Foils," Nano Letters,vol. 11, pp. 3519-3525, 2011/09/14 2011.[Crossref]
  • [98] R. S. Weatherup, B. C. Bayer, R. Blume, C. Ducati, C. Baehtz, R.Schlögl, et al., "In Situ Characterization of Alloy Catalysts forLow-Temperature Graphene Growth," Nano Letters, vol. 11, pp.4154-4160, 2011/10/12 2011.[Crossref]
  • [99] B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, et al., "Rationaldesign of a binary metal alloy for chemical vapour depositiongrowth of uniform single-layer graphene," Nat Commun, vol.2, p. 522, 2011.[Crossref]
  • [100] Y. S. Woo, D. H. Seo, D.-H. Yeon, J. Heo, H.-J. Chung, A. Benayad,et al., "Low temperature growth of complete monolayergraphene films on Ni-doped copper and gold catalysts by aself-limiting surface reaction," Carbon, vol. 64, pp. 315-323,2013.[Crossref]
  • [101] Z.-Y. Juang, C.-Y. Wu, C.-W. Lo, W.-Y. Chen, C.-F. Huang, J.-C.Hwang, et al., "Synthesis of graphene on silicon carbide substratesat low temperature," Carbon, vol. 47, pp. 2026-2031,2009.[Crossref]
  • [102] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growthof graphene from solid carbon sources," Nature, vol. 468, pp.549-552, 2010.
  • [103] C. Orofeo, H. Ago, B. Hu, and M. Tsuji, "Synthesis of large area,homogeneous, single layer graphene films by annealing amorphouscarbon on Co and Ni," Nano Research, vol. 4, pp. 531-540, 2011/06/01 2011.[Crossref]
  • [104] W. Xiong, Y. S. Zhou, L. J. Jiang, A. Sarkar, M.Mahjouri-Samani,Z. Q. Xie, et al., "Single-Step Formation of Graphene on DielectricSurfaces," AdvancedMaterials, vol. 25, pp. 630-634, 2013.
  • [105] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, etal., "Metal-catalyzed crystallization of amorphous carbon tographene," Applied Physics Letters, vol. 96, p. 063110, 2010.[Crossref]
  • [106] J. H. Seo, H.W. Lee, J.-K. Kim, D.-G. Kim, J.-W. Kang, M.-S. Kang,et al., "Few layer graphene synthesized by filtered vacuum arcsystem using solid carbon source," Current Applied Physics,vol. 12, Supplement 2, pp. S131-S133, 2012.[Crossref]
  • [107] E. Moreau, F. Ferrer, D. Vignaud, S. Godey, and X. Wallart,"Graphene growth by molecular beam epitaxy using a solidcarbon source," physica status solidi (a), vol. 207, pp. 300-303, 2010.
  • [108] L. Baraton, Z. B. He, C. S. Lee, C. S. Cojocaru, M. Châtelet,J. L. Maurice, et al., "On the mechanisms of precipitation ofgraphene on nickel thin films," EPL (Europhysics Letters), vol.96, p. 46003, 2011.[Crossref]
  • [109] B. Laurent, H. Zhanbing, L. Chang Seok, M. Jean-Luc, C. CostelSorin, G.-L. Anne-Françoise, et al., "Synthesis of few-layeredgraphene by ion implantation of carbon in nickel thin films,"Nanotechnology, vol. 22, p. 085601, 2011.
  • [110] S.-J. Byun, H. Lim, G.-Y. Shin, T.-H. Han, S. H. Oh, J.-H. Ahn,et al., "Graphenes Converted from Polymers," The Journal ofPhysical Chemistry Letters, vol. 2, pp. 493-497, 2011/03/032011.[Crossref]
  • [111] H.-J. Shin, W. M. Choi, S.-M. Yoon, G. H. Han, Y. S. Woo, E. S.Kim, et al., "Transfer-Free Growth of Few-Layer Graphene bySelf-Assembled Monolayers," AdvancedMaterials, vol. 23, pp.4392-4397, 2011.
  • [112] T. Wu, G. Ding, H. Shen, H. Wang, L. Sun, D. Jiang, et al., "Triggeringthe Continuous Growth of Graphene Toward Millimeter-Sized Grains," Advanced FunctionalMaterials, vol. 23, pp. 198-203, 2013.
  • [113] Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, et al., "Growth ofBilayer Graphene on Insulating Substrates," ACS Nano, vol. 5,pp. 8187-8192, 2011/10/25 2011.[Crossref]
  • [114] G. Lippert, J. Dabrowski, M. Lemme, C.Marcus,O. Seifarth, andG. Lupina, "Direct graphene growth on insulator," physica statussolidi (b), vol. 248, pp. 2619-2622, 2011.
  • [115] N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, et al., "UniversalSegregation Growth Approach to Wafer-Size Graphenefrom Non-Noble Metals," Nano Letters, vol. 11, pp. 297-303,2011/01/12 2010.
  • [116] J. Hofrichter, B. u. N. Szafranek, M. Otto, T. J. Echtermeyer, M.Baus, A. Majerus, et al., "Synthesis of Graphene on SiliconDioxide by a Solid Carbon Source," Nano Letters, vol. 10, pp.36-42, 2010/01/13 2009.[Crossref]
  • [117] C. Y. Kang, L. L. Fan, S. Chen, Z. L. Liu, P. S. Xu, and C. W. Zou,"Few-layer graphene growth on 6H-SiC(0001) surface at lowtemperature via Ni-silicidation reactions," Applied Physics Letters, vol. 100, pp. 251604-251604-5, 2012.
  • [118] G. Pan, B. Li, M. Heath, D. Horsell, M. L.Wears, L. Al Taan, et al.,"Transfer-free growth of graphene on SiO2 insulator substratefrom sputtered carbon and nickel films," Carbon, vol. 65, pp.349-358, 2013.[Crossref]
  • [119] Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, "Direct Growth of BilayerGraphene on SiO2 Substrates by Carbon Diffusion throughNickel," ACS Nano, vol. 5, pp. 8241-8247, 2011/10/25 2011.[Crossref]
  • [120] S. Suzuki, Y. Takei, K. Furukawa, and H. Hibino, "GrapheneGrowth from a Spin-Coated Polymer without a Reactive Gas,"Applied Physics Express, vol. 4, 2011.[Crossref]
  • [121] X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, et al., "SegregationGrowth of Graphene on Cu–Ni Alloy for Precise Layer Control,"The Journal of Physical Chemistry C, vol. 115, pp. 11976-11982,2011/06/23 2011.[Crossref]
  • [122] H. Sojoudi and S. Graham, "Transfer-Free Selective Area Synthesisof Graphene Using Solid-State Self-Segregation of CarbonIn Cu/Ni Bilayers," ECS Journal of Solid State Science andTechnology, vol. 2, pp. M17-M21, January 1, 2013 2013.
  • [123] D.Wang, H. Tian, Y. Yang, D. Xie, T.-L. Ren, and Y. Zhang, "Scalableand Direct Growth of Graphene Micro Ribbons on DielectricSubstrates," Sci. Rep., vol. 3, 2013.
  • [124] L. Gao, G.-X. Ni, Y. Liu, B. Liu, A. H. Castro Neto, and K. P. Loh,"Face-to-face transfer of wafer-scale graphene films," Nature,vol. advance online publication, 2013.[Crossref]
  • [125] J. Kwak, J. H. Chu, J.-K. Choi, S.-D. Park, H. Go, S. Y. Kim, et al.,"Near room-temperature synthesis of transfer-free graphenefilms," Nat Commun, vol. 3, p. 645, 2012.[Crossref]
  • [126] L. Zhang, Z. Shi, Y. Wang, R. Yang, D. Shi, and G. Zhang,"Catalyst-free growth of nanographene films on various substrates,"Nano Research, vol. 4, pp. 315-321, 2011.[Crossref]
  • [127] G.Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang, Q. Guo, et al., "DirectGrowth of Graphene Film on Germanium Substrate," Sci.Rep., vol. 3, 08/19/online 2013.
  • [128] J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, et al.,"Wafer-Scale Growth of Single-Crystal Monolayer Graphene onReusable Hydrogen-Terminated Germanium," Science, April 3,2014 2014.[Crossref]
  • [129] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G.Schwab, and K. Kim, "A roadmap for graphene," Nature, vol.490, pp. 192-200, 10/11/print 2012.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.