Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2004 | 2 | 1 | 67-89

Article title

Mass-transport driven by surface instabilities in metals under reactive plasma/ion beam treatment at moderate temperature


Title variants

Languages of publication



This paper presents a generalized approach to the mechanisms of oxidation, hydrogenation and nitriding of metals under ion irradiation with reactive particles at elevated temperatures. Experimental results on the plasma oxidation of bilayered Y/Zr films, the plasma hydrogenation of Mg films and the ion beam (1.2 keV N2+) nitriding of stainless steel are presented and discussed. We make special emphasis on the analysis of surface effects and their role in the initiation of mixing of bilayered films, the ingress of reactive species in the bulk and the restructuring of the surface layers. It is suggested that primary processes driving reactive atoms from the surface into the bulk are surface instabilities induced by thermal and ballistic surface atom relocations under reactive adsorption and ion irradiation, respectively. The diffusion of adatoms and vacancies, at temperature when they become mobile, provide the means to relax the surface energy. It is recognized that the stabilizing effect of surface adatom diffusion is significant at temperatures below 300–350°C. As the temperature increases, the role of surface adatom diffusion decreases and processes in the bulk become dominant. The atoms of subsurface monolayers occupy energetically favorable sites on the surface, and result in reduced surface energy.










Physical description


1 - 3 - 2004
1 - 3 - 2004


  • Vytautas Magnus University, 8 Vileikos St., LT-3035, Kaunas, Lithuania
  • Lithuanian Energy Institute, 3 Breslaujos St., LT-3035, Kaunas, Lithuania
  • Vytautas Magnus University, 8 Vileikos St., LT-3035, Kaunas, Lithuania
  • Vytautas Magnus University, 8 Vileikos St., LT-3035, Kaunas, Lithuania
  • Poitiers University, UMR6630, BP30179, 86960, Futuroscope, France
  • Poitiers University, UMR6630, BP30179, 86960, Futuroscope, France


  • [1] R. Hanngsrud: “On high temperature oxidation of nickel”, Corrosion Science, Vol. 45, (2003), pp. 211–235. http://dx.doi.org/10.1016/S0010-938X(02)00085-9[Crossref]
  • [2] G. Majer, J. Gottwald, D.T. Peterson and R.G. Barnes: “Model-independent measurements of hydrogen diffusivity in the yttrium dehydrides”, J. Alloys. Compounds, Vol. 330–332, (2002), pp. 438–442. http://dx.doi.org/10.1016/S0925-8388(01)01452-9[Crossref]
  • [3] D.L. Williamson, J.A. Daris, P.J. Wilbur, J.J. Vako, R. Wei and J. N. Natosian: “Relative roles of ion energy, ion flux sample temperature in low-energy ion implantation of Fe−Cr−Ni stainless steel”, Nucl. Instrum. Meth. Phs. Res. B, Vol. 127–128, (1997), pp. 930–934. http://dx.doi.org/10.1016/S0168-583X(97)00033-5[Crossref]
  • [4] G. Thorward, S. Mandl and B. Ranschenback: “Rutile formation and oxygen diffusion in oxygen PIII-treated titanium”, Surface and Coatings technology, Vol. 136., (2001), pp. 236–240. http://dx.doi.org/10.1016/S0257-8972(00)01021-5[Crossref]
  • [5] D.A. Komarov, A.V. Markin, S.Yu. Rybakov and A.P. Zakharov: “Role of grain boundaries and carbon deposition in deuterium retention behavior of deuterium plasma exposed tungsten”, J. Nucl. Materials, Vol. 290–293, (2001), pp. 433–436. http://dx.doi.org/10.1016/S0022-3115(00)00511-0[Crossref]
  • [6] F. Czerwinski: “The oxidation behavior of an AZ91D magnesium alloy at high temperatures”, Acta Materialia, Vol. 50., (2002), pp. 2639–2654. http://dx.doi.org/10.1016/S1359-6454(02)00094-0[Crossref]
  • [7] P. Fielitz, G. Borchardtt, M. Schmucker, H. Schneider and P. Willich: “Measurement of oxygen grain boundary diffusion in mullite ceramics by SIMS depth profiling”, Applied Surface Science, Vol. 248, (2001), pp. 1–5.
  • [8] G. Majer, U. Eberle, F. Kimmerle, E. Stanik and S. Orimo: “Hydrogen diffusion in metallic and naostrustured materials”, Physica B., Vol. 328, (2003), pp. 81–89. http://dx.doi.org/10.1016/S0921-4526(02)01815-X[Crossref]
  • [9] P. Kofstad: High Temperature Corrosion, Elsevier Applied Science, London, New York, 1988.
  • [10] W. Möler, S. Parascandola, T. Telbizova, R. Günzel and E. Richter: “Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aliminium”, Surface. Coat. Technol., Vol. 136, (2001), pp. 73–79. http://dx.doi.org/10.1016/S0257-8972(00)01015-X[Crossref]
  • [11] V. Stankus, J. Dudonis, L. Pranevicius, L.L. Pranevicius, D. Milcius, C. Templier and J.-P. Riviere: “On the mechanism of synthesis of PbTiO3 films”, Thin Solid Films, Vol. 426, (2003), pp. 78–84. http://dx.doi.org/10.1016/S0040-6090(02)01131-8[Crossref]
  • [12] L. Pranevicius, D. Milcius, L.L. Pranevicius, C. Templier, V. Sirvinskaite and R. Knizikevicius: “Role of surface instabilities in mixing and oxidation kinetics of bilayered Y/Zr films at elevated temperature”, Surf. Appl. Sc., (2003), in press.
  • [13] K. Tanaka, H. Tanaka and H Kawaguchi: “Effects of hydrogenation on interlayer reactions in metallic multilayers”, J. Alloys and Compounds, Vol. 330–332, (2002), pp. 256–261. http://dx.doi.org/10.1016/S0925-8388(01)01665-6[Crossref]
  • [14] G. Thomas, L. Pranevicius, D. Milcius and L. L. Pranevicius: “Plasma hydriding of aluminum and magnesium thin films for hydrogen storage applications”, In: Proceedings III Intern. Symposium: New Electrical and Electronic Technologies, Zakopane, Poland, 2003.
  • [15] S.V. Fortuna, Y.P. Sharkeev, A.P. Perry, J.N. Matossian and A. Shuleopov: “Microstructural features of wear-resistant titanium nitride coatings deposited by different methods”, Thin Solid Films, Vol. 377–378, (2000) pp. 512–517. http://dx.doi.org/10.1016/S0040-6090(00)01438-3[Crossref]
  • [16] J.P. Rivier, P. Meheust, J.P. Willain, C. Templier, M. Cahorean, G. Abrasonis, L. Pranevicius: “High current density nitrogen implantation of an austenitic stainless steel”, Surf. Coat. Technol., Vol. 158–159, (2002), pp. 99–104. http://dx.doi.org/10.1016/S0257-8972(02)00227-X[Crossref]
  • [17] L. Pranevicius: Coating Technology: Ion Beam Deposition, Satas and Associates, Warwick, Rhode Island, 1993.
  • [18] F. Tsui, J. Wellman, C. Uher and R. Clark: “Morphology of thin films depositied by DC sputtering”, Phys. Rev. Lett., Vol. 76, (1996), pp. 3164–3168. http://dx.doi.org/10.1103/PhysRevLett.76.3164[Crossref]
  • [19] J.A. Floro, E. Chason, R.C. Commarata and D. Srolovitz: “Physical origins of intrinsic stresses in Vomer-Weber thin films”, MRS Bulletin, Vol. 27(1), (2002), pp. 19–25. [Crossref]
  • [20] O. Kraft, L.B. Freund, R. Phillips and E. Arzt: “Dislocation plasticity in thin metal films”, MRS Bulletin, Vol. 27(1), (2002), pp. 30–37. [Crossref]
  • [21] P. Meheust: Implantation ionique d'azote a basse energie et flux eleve dans l'acier austenitique 304 L, These doctorale, Poitiers University, 2000.
  • [22] G.A. Samorjai: “From surface materials to surface technologies”, MRS Bulletin, Vol. 23(5), (1999), pp. 11–29.
  • [23] H. Onishi and Y. Iwasawa: “STM observation of surface reaction on metal oxide”, Surface Science, Vol. 357–358, (1996), pp. 773–776. http://dx.doi.org/10.1016/0039-6028(96)00262-2[Crossref]
  • [24] P. Bellon and R.A. Enrique: “Interface stability and self-organization of precipitates under irradiation”, Nucl. Instrum. Meth. Phys. Res. B., Vol. 178, (2001), pp. 1–6. http://dx.doi.org/10.1016/S0168-583X(00)00500-0[Crossref]
  • [25] R.H. Swedsen: “Thermal roughening effect”, Phys. Rev. B., Vol. 15, (1977), pp. 542.
  • [26] L. Pranevicius, C. Templier, J. Delafond and S. Muzard: “Simulation of interface effects during simultaneous deposition and ion, irradiation”, Surf. Coat. Technol., Vol. 72, (1995), pp. 51–61. http://dx.doi.org/10.1016/0257-8972(94)02330-S[Crossref]
  • [27] T. Seki, T. Aoki, J. Matsuo and I. Yamada: “STM observation of surface vacancies created by ion impact”, Nucl. Instrum. Meth. Phys. Res. B, Vol. 164/165, (2000), pp. 650–655. http://dx.doi.org/10.1016/S0168-583X(99)01112-X[Crossref]
  • [28] D. Porath, Y. Goldstein, A. Grayevsky and O. Millo: “Scanning tunneling microscopy studies of annealing of gold films”, Surface Science, Vol. 321, (1994), pp. 81–88. http://dx.doi.org/10.1016/0039-6028(94)90028-0[Crossref]
  • [29] J. Chaiken and J. Goodisman: “Use of fractals and kinetic equations to model thermally induced hillock formation and growth in thin films”, Thin Solid Films, Vol. 260, (1995), pp. 243–251. http://dx.doi.org/10.1016/0040-6090(94)06479-2[Crossref]
  • [30] P. Fielitz, G. Borchardt, M. Schmucker, H. Schneider and P. Willich: “Measurement of oxygen grain boundary diffusivities of oxygen in polycrystalline oxides”, Applied Surface Science, Vol. 203–204, (2003), pp. 639–643. http://dx.doi.org/10.1016/S0169-4332(02)00641-4[Crossref]
  • [31] Y.P. Sharkeev, B.P. Gritsenko, S.V. Fortuna and A.J. Pery: “Modification of metallic materials and hard coatings using metal ion implantation”, Vacuum, Vol. 52, (1999), pp. 247–254. http://dx.doi.org/10.1016/S0042-207X(98)00198-5[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.