Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 1 | 95-105

Article title

β-Galactosidase from Penicillium canescens. Properties and immobilization


Title variants

Languages of publication



β-galactosidase from Penicillium canescens was immobilized on chitosan, sepharose-4B, foamable polyurethane and some other carriers. The highest yield of immobilization (up to 98%) was obtained by using chitosan as a carrier. The optimum pH and temperature were not significantly altered by immobilization. High stability of immobilized β-galactosidase during storage was demonstrated. Efficient lactose saccharification (over 90%) in whey was achieved by using immobilized β-galactosidase.










Physical description


1 - 3 - 2005
1 - 3 - 2005


  • Department of Polymer Chemistry of Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
  • Department of Polymer Chemistry of Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
  • Department of Polymer Chemistry of Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
  • Institute of Biotechnology, Kashirskoe shosse 24/17, 115478, Moscow, Russia
  • Lithuanian Food Institute, Taikos av. 92, 3031, Kaunas, Lithuania
  • Institute of Biotechnology, Graiciuno 8, 02241, Vilnius, Lithuania
  • Institute of Biotechnology, Graiciuno 8, 02241, Vilnius, Lithuania


  • [1] A.A. Klyosov: “Industrial production with immobilized enzymes: antibiotics, food additives and dairy products”, In: Industrial enzyme engineering, Vol. 5, (1995), pp. 544–561, http://aklyosov.home.comcast.net/Volume5.htm.
  • [2] Jean-Luc A. Baret and Luc A. Dohan: “Process for hydrolyzing lactose with immobilized lactase”, US 4409247, (1983).
  • [3] Z.C. Hu, R.A. Korus and K.E. Stormo: “Characterization of immobilized enzymes in polyurethane foams in a dynamic bed reactor”, Appl. Microbiol. Biotechnol., Vol. 39(3), (1993), pp. 289–295. http://dx.doi.org/10.1007/BF00192080[Crossref]
  • [4] A. Dashevsky: “Protein loss by the microencapsulation of an enzyme (lactase) in alginate beads”, Int. J. of Pharmaceutics, Vol. 161, (1998), pp. 1–5. http://dx.doi.org/10.1016/S0378-5173(97)00172-5[Crossref]
  • [5] A. Tanriseven and S. Dogan: “A novel method for the immobilization of β-galactosidase”, Process Biochem., Vol. 38, (2002), pp. 27–30. http://dx.doi.org/10.1016/S0032-9592(02)00049-3[Crossref]
  • [6] J. Rogalski, A. Dawidowicz and A. Leonowicz: “Lactose hydrolysis in milk by immobilized β-galactosidase”, J. Mol. Catal., Vol. 93, (1994), pp. 233–245. http://dx.doi.org/10.1016/0304-5102(94)00092-1[Crossref]
  • [7] C. Carrara and A. Rubiolo: “Method for evaluating lactose hydrolysis in a fixed bed reactor with β-galactosidase immobilized on chitosan”, Chemical Eng. J., Vol. 65, (1997), pp. 93–98. http://dx.doi.org/10.1016/S1385-8947(96)03161-0[Crossref]
  • [8] J. Szczodrak: “Hydrolysis of lactose in whey by immobilized β-galactosidase from Kluyveromyces fragilis”, J. Molec. Catal. B: Enzymatic, Vol. 10, (2000), pp. 631–637. http://dx.doi.org/10.1016/S1381-1177(00)00187-9[Crossref]
  • [9] M. Ladero, A. Santos, J.L. Garcia, A.V. Carrascosa, B.C. Pessela and F. Garcia-Ochoa: “Studies on the activity and the stability of β-galactosidases from Thermus sp strain T2 and from Kluyveromyces fragilis”, Enzyme and Microbial Technol., Vol. 30, (2002), pp. 392–405. http://dx.doi.org/10.1016/S0141-0229(01)00506-3[Crossref]
  • [10] M. Ladero, A. Santos and F. Garcia-Ochoa: “Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis”, Enzyme and Microbioal Technol. Vol. 27, (2000), pp. 582–592.
  • [11] I.V. Nikolaev, O.M. Chodova, E.A. Timochina, A.J. Aleksenko and J.P. Vinetski: “Molecular characteristics of secreted β-galactosidase of Penicillium canescens”, Biochimija, Vol. 54(8), (1989), pp. 1294–1299 (in Russian).
  • [12] A.A. Shishkin, O.M. Poltorak, E.S. Tsuchrai, L.A. Nachapitan and V.L. Suprun: “Quaternary structure of β-galactosidase and its role in processes of thermoinactivation”, Zurnal fiziceskoi chimiji, Vol. 64(8), (1990), pp. 2169–2174 (in Russian).
  • [13] M.M. Gomarteli, A.K. Kulikova, A.K. Cereteli, A.M. Bezborodov and G.I. Kvecitadze: “β-galactosidase of Penicillium canescens strain 20171”, Prikladnaja biochimija I mikrobiologija, Vol. 24(1), (1988), pp. 20–27 (in Russian).
  • [14] O.S. Korneeva, N.A. Zerebcov and I.V. Ceremushkina: “Identification of catalytically active groups of β-galactosidase from Penicillium canescens F-436”, Biochimija, Vol. 66(3), (2001), pp. 412–418 (in Russian).
  • [15] N.M. Samoshina, E.J. Lotmenceva and V.N. Borisova: “Comparable investigation of some kinetics parameters of fungal β-galactosidases”, Prikladnaja biochimija I mikrobiologija, Vol. 21(6), (1985), pp. 745–751 (in Russian).
  • [16] E. Jurado, F. Camacho, G. Luzon and J.M. Vicaria: “A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis”, Enzyme and Microbial Technol. Vol. 31, (2002), pp. 300–309. http://dx.doi.org/10.1016/S0141-0229(02)00107-2[Crossref]
  • [17] V.I. Bilay, A.T. Shkolniy, I.A. Ellanskay, T.A. Cheremnova, L.V. Yugova, V.V. Dorokhov and K.A. Kalunaynts: “Avtorskoe svidetelstvo USSR”, N1065476, (1984).
  • [18] N.M. Samoshina, E.J. Lotmenceva and V.N. Borisova: “Hydrophobic immobilization of fungal β-galactosidases on inorganic supports with carboxylic groups”, Prikladnaja biochimija I mikrobiologija, Vol. 20(6), (1984), pp. 817–821 (in Russian).
  • [19] N.M. Samoshina, V.N. Borisova, L.V. Jugova, E.J. Lotmentseva and L.A. Nakhapetian: “Process for immobilising beta-galactosidase”, FR2619824, (1989).
  • [20] L.F. Atyaksheva and O.M. Poltorak: “Changing of immobilized β-galactosidase properties at long storage”, Zurnal fiziceskoi chimiji, Vol. 68(7), (1994), pp. 1341–1343 (in Russian).
  • [21] L.F. Atyaksheva, T.V. Volnova and O.M. Poltorak: “Influence of starch polysaccharides on thermostability of immobilized β-galactosidase”, Zurnal fiziceskoi chimiji, Vol. 68(8), (1994), pp. 1492–1494 (in Russian).
  • [22] M.V. Morkeviciene, A.A. Dikciuviene, A.A.B. Pauliukonis, J.V. Liesiene, A.C.V. Marushka, A.K. Vaitkevicius, T.A. Ladur, L.M. Melnikova and N.G. Guliuk: “The synthesis of immobilized enzymes”, SU 1637329 A1, (1988).
  • [23] K. Mosbach: “Preparation of glutaraldehyde-bound enzymes”, In: Methods in Enzymology. Immobilized enzymes, Vol. 44, Academic Press, New York, San Francisco, London, 1976, pp. 51–52.
  • [24] J.G. Domszy and G.A. Roberts: “Evaluation of infrared spectroscopic techniques for analysing chitosan”, Makromol. Chem., Vol. 186, (1985), pp. 1671–1677. http://dx.doi.org/10.1002/macp.1985.021860815[Crossref]
  • [25] W. Wang: “Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation”, Int. J. of Biol. Macromol., Vol. 13, (1991), pp. 281–285. http://dx.doi.org/10.1016/0141-8130(91)90027-R[Crossref]
  • [26] S. Budriene, A. Zubriene, N. Gorochovceva and G. Dienys: “Chitosan as a carrier for immobilization of enzymes”, In: Proceedings of Baltic Polymer Symposium 2001, Tallinn, 2001, pp. 160–164.
  • [27] D. Braun: “Preparation of a linear polyurethane from 1,4-butanediol and hexamethylene diisocyanate in solution”, In: Polymer Synthesis: Theory and Practice, 3rd Ed., Springer, 2001, pp. 271.
  • [28] A. Dahlqvist: “Method for assay of intestinal disaccharides”, Anal. Biochem., Vol. 7, (1964), pp. 18–25. http://dx.doi.org/10.1016/0003-2697(64)90115-0[Crossref]
  • [29] M. Bakker, F. van de Velde, F. van Rantwijk and R.A. Sheldon: “Highly efficient immobilization of glycosylated enzymes into polyurethane foams”, Biotechnol. Bioeng., Vol. 70(3), (2000), pp. 342–348. http://dx.doi.org/10.1002/1097-0290(20001105)70:3<342::AID-BIT11>3.0.CO;2-A[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.