Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 2 | 279-287

Article title

Study of catalase immobilized on a silicate matrix for non-aqueous biocatalysis


Title variants

Languages of publication



Catalytic activity of catalase (CAT) immobilized on a modified silicate matrix to mediate decomposition of meta-chloroperoxibenzoic acid (3-CPBA) in acetonitrile has been investigated by means of quantitative UV-spectrophotometry. Under the selected experimental conditions, the kinetic parameters: the apparent Michaelis constat (KM), the apparent maximum rate of enzymatic reaction (Vmaxapp), the first order specific rate constants (ksp), the energy of activation (Ea) and the pre-exponential factor of the Arrhenius equation (Z0) were calculated. Conclusions regarding the rate-limiting step of the overall catalytic process were drawn from the calculated values of the Gibbs energy of activation ΔG*, the enthalpy of activation ΔH*, and the entropy of activation ΔS*.










Physical description


1 - 6 - 2005
1 - 6 - 2005


  • Department of Physical Chemistry, Plovdiv University, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria
  • Department of Physical Chemistry, Plovdiv University, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria


  • [1] S. Akgol and E. Dinckaya: “A novel biosensor for specific determination of hydrogen peroxide: catalase enzyme electrode based on dissolved oxygen probe”, Talanta, Vol. 48, (1999), pp. 363–367. http://dx.doi.org/10.1016/S0039-9140(98)00255-0[Crossref]
  • [2] “Amperometric biosensors” In: E. Turner, I. Karube and D. Wilson (Eds.): Biosensors-fundamentals and applications, Mir, Moscow, 1992 (in Russian).
  • [3] T. Tatsuma, T. Watanabe and S. Tatsuma: “Substrate-purging enzyme electrodes. Peroxidase/catalase electrodes for H2O2 with an improved upper-sensing limit”, Anal. Chem., Vol. 66, (1994), pp. 290–294. http://dx.doi.org/10.1021/ac00074a017[Crossref]
  • [4] E. Akyilmaz and E. Dinckaya: “Development of a catalase based biosensor for alcohol determination in beer samples”, Talanta, Vol. 61, (2003), pp. 113–118. http://dx.doi.org/10.1016/S0039-9140(03)00245-5[Crossref]
  • [5] V.C. Gekas: “Artificial membranes as carriers for the immobilization of biocatalysts”, Enzyme Microb. Technol., Vol. 8, (1986), pp. 450–460. http://dx.doi.org/10.1016/0141-0229(86)90046-3[Crossref]
  • [6] S. Akgol, Y. Kacar, S. Ozkara, H. Yavuz, A. Denizli and M.Y. Arica: “Immobilization of catalase via adsorption onto L-histidine grafted pHEMA based membrane”., J. Mol. Catalysis B-Enzymatic, Vol. 15, (2001), pp. 197–206. http://dx.doi.org/10.1016/S1381-1177(01)00029-7[Crossref]
  • [7] U. Chatterjee, A. Kumar and G.G. Sanwal: “Goat liver catalase immobilized on various solid supports”, J. Ferment. Bioeng., Vol. 70, (1990), pp. 423–430. http://dx.doi.org/10.1016/0922-338X(90)90127-I[Crossref]
  • [8] E. Horozova, N. Dimcheva and Z. Jordanova: “Adsorption, catalytic and electrochemical activity of catalase immobilized on carbon materials”, Z. Naturforsch., Vol. 52C, (1997), pp. 632–644.
  • [9] A. Paar, S. Costa, T. Tzanov, M. Gudelj, K.-H. Robra, A. Cavaco-Paulo and G.M. Gubitz: “Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents”, J. Biotechnol., Vol. 89, (2001), pp. 147–153. http://dx.doi.org/10.1016/S0168-1656(01)00305-4[Crossref]
  • [10] E. Magner and A.M. Klibanov: “The oxidation of chiral alcohols catalyzed by catalase in organic solvents”, Biotechnol. Bioeng., Vol. 46, (1995), pp. 175–179. http://dx.doi.org/10.1002/bit.260460211[Crossref]
  • [11] L. Campanella, G. Favero, M.P. Sammartino and M. Tomassetti: “Further Development of catalase, tyrosinase and glucose oxidase based organic phase enzyme electrode response as a function of organic solvent properties”, Talanta, Vol. 46, (1998), pp. 595–606. http://dx.doi.org/10.1016/S0039-9140(97)00311-1[Crossref]
  • [12] L. Campanella, U. Martini, M.P. Sammartino and M. Tomassetti: “The Effect of Organic Solvent on a Catalase Enzyme Sensor for Monitoring Hydrogen Peroxide in Nonaqueous Solutions”, Electroanalysis, Vol. 8, (1996), pp. 1150–1154. http://dx.doi.org/10.1002/elan.1140081215[Crossref]
  • [13] L. Campanella, M.P. Sammartino, M. Tomassetti and S. Zannella: “Hydroperoxide determination by a catalase OPEE: application to the study of extra virgin olive oil rancidification process”, Sensors and Actuators B, Vol. 76, (2001), pp. 158–165. http://dx.doi.org/10.1016/S0925-4005(01)00615-3[Crossref]
  • [14] J. Wang, G. Rivas and J. Liu: “A catalase electrode for organic-phase enzymatic assays”, Anal. Lett., Vol. 28, (1995), pp. 2287–2295. [Crossref]
  • [15] E. Horozova, N. Dimcheva and Z. Jordanova: “Study of catalase electrode for organic peroxides assays”, Bioelectrochemistry, Vol. 58, (2002), pp. 181–187. http://dx.doi.org/10.1016/S1567-5394(02)00153-6[Crossref]
  • [16] N. Dimcheva, E. Horozova and T. Shougova: “The enzyme source effect on the performance of a catalase organic phase enzyme electrode”, Monats. fur Chemie, Vol. 136, (2005), pp. 147–152. http://dx.doi.org/10.1007/s00706-004-0233-3[Crossref]
  • [17] N. Dimcheva, E. Horozova and Z. Jordanova: “Decomposition of Cumene Hydroperoxide in Acetonitrile Catalyzed by Immobilized Catalase”, Bulgarian Chemistry and Industry, Vol. 75, (2004), pp. 1–7.
  • [18] E. Horozova, N. Dimcheva and Z. Jordanova: “Catalytic decomposition of 3-chloroperoxybenzoic acid by immobilized catalase in a non-aqueous medium”, Z. Naturforsch., Vol. 55C, (2000), pp. 55–59.
  • [19] E. Horozova, N. Dimcheva and Z. Jordanova: “Enzyme-catalyzed decomposition of dibenzoyl peroxide in organic solvents”, Z. Naturforsch, Vol. 56C, (2001), pp. 553–558.
  • [20] T. Aydemir and K. Kuru: “Purification and partial characterization of catalase from chicken erythrocytesand the effect of various inhibitors on enzyme activity”, Turk. J. Chem., Vol. 27, (2003), pp. 85–97.
  • [21] P. Chelikani, I. Fita and P. Loewen: “Diversity of structures and properties among catalases”, Cell. Mol. Life Sci., Vol. 61, (2004), pp. 192–208. http://dx.doi.org/10.1007/s00018-003-3206-5[Crossref]
  • [22] J. Keyhani, E. Keyhani and J. Kamali: “Thermal stability of catalases active in dormant saffron (Crocus sativus L.) corms”, In: 10th Meeting of the International Study Group of Biothermokinetics (BTK), 7–10 Sep. 2002, Bordeaux- Arcachon (http://www.rmsb.u-bordeaux2.fr/BTK/abstracts/25-KeyhaniJ.pdf).
  • [23] I.V. Berezin, N.L. Kliachko, A.V. Levashev, K. Martinek, V.V. Mojaev and Y. Khmelnitskii: Kinetic regularities in the catalysis with immobilized enzymes, Vishaya shkola, Moscow, 1987 (in Russian).

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.