Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 2 | 279-287

Article title

Study of catalase immobilized on a silicate matrix for non-aqueous biocatalysis

Content

Title variants

Languages of publication

EN

Abstracts

EN
Catalytic activity of catalase (CAT) immobilized on a modified silicate matrix to mediate decomposition of meta-chloroperoxibenzoic acid (3-CPBA) in acetonitrile has been investigated by means of quantitative UV-spectrophotometry. Under the selected experimental conditions, the kinetic parameters: the apparent Michaelis constat (KM), the apparent maximum rate of enzymatic reaction (Vmaxapp), the first order specific rate constants (ksp), the energy of activation (Ea) and the pre-exponential factor of the Arrhenius equation (Z0) were calculated. Conclusions regarding the rate-limiting step of the overall catalytic process were drawn from the calculated values of the Gibbs energy of activation ΔG*, the enthalpy of activation ΔH*, and the entropy of activation ΔS*.

Publisher

Journal

Year

Volume

3

Issue

2

Pages

279-287

Physical description

Dates

published
1 - 6 - 2005
online
1 - 6 - 2005

Contributors

  • Department of Physical Chemistry, Plovdiv University, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria
author
  • Department of Physical Chemistry, Plovdiv University, 24, Tsar Assen st., 4000, Plovdiv, Bulgaria

References

  • [1] S. Akgol and E. Dinckaya: “A novel biosensor for specific determination of hydrogen peroxide: catalase enzyme electrode based on dissolved oxygen probe”, Talanta, Vol. 48, (1999), pp. 363–367. http://dx.doi.org/10.1016/S0039-9140(98)00255-0[Crossref]
  • [2] “Amperometric biosensors” In: E. Turner, I. Karube and D. Wilson (Eds.): Biosensors-fundamentals and applications, Mir, Moscow, 1992 (in Russian).
  • [3] T. Tatsuma, T. Watanabe and S. Tatsuma: “Substrate-purging enzyme electrodes. Peroxidase/catalase electrodes for H2O2 with an improved upper-sensing limit”, Anal. Chem., Vol. 66, (1994), pp. 290–294. http://dx.doi.org/10.1021/ac00074a017[Crossref]
  • [4] E. Akyilmaz and E. Dinckaya: “Development of a catalase based biosensor for alcohol determination in beer samples”, Talanta, Vol. 61, (2003), pp. 113–118. http://dx.doi.org/10.1016/S0039-9140(03)00245-5[Crossref]
  • [5] V.C. Gekas: “Artificial membranes as carriers for the immobilization of biocatalysts”, Enzyme Microb. Technol., Vol. 8, (1986), pp. 450–460. http://dx.doi.org/10.1016/0141-0229(86)90046-3[Crossref]
  • [6] S. Akgol, Y. Kacar, S. Ozkara, H. Yavuz, A. Denizli and M.Y. Arica: “Immobilization of catalase via adsorption onto L-histidine grafted pHEMA based membrane”., J. Mol. Catalysis B-Enzymatic, Vol. 15, (2001), pp. 197–206. http://dx.doi.org/10.1016/S1381-1177(01)00029-7[Crossref]
  • [7] U. Chatterjee, A. Kumar and G.G. Sanwal: “Goat liver catalase immobilized on various solid supports”, J. Ferment. Bioeng., Vol. 70, (1990), pp. 423–430. http://dx.doi.org/10.1016/0922-338X(90)90127-I[Crossref]
  • [8] E. Horozova, N. Dimcheva and Z. Jordanova: “Adsorption, catalytic and electrochemical activity of catalase immobilized on carbon materials”, Z. Naturforsch., Vol. 52C, (1997), pp. 632–644.
  • [9] A. Paar, S. Costa, T. Tzanov, M. Gudelj, K.-H. Robra, A. Cavaco-Paulo and G.M. Gubitz: “Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents”, J. Biotechnol., Vol. 89, (2001), pp. 147–153. http://dx.doi.org/10.1016/S0168-1656(01)00305-4[Crossref]
  • [10] E. Magner and A.M. Klibanov: “The oxidation of chiral alcohols catalyzed by catalase in organic solvents”, Biotechnol. Bioeng., Vol. 46, (1995), pp. 175–179. http://dx.doi.org/10.1002/bit.260460211[Crossref]
  • [11] L. Campanella, G. Favero, M.P. Sammartino and M. Tomassetti: “Further Development of catalase, tyrosinase and glucose oxidase based organic phase enzyme electrode response as a function of organic solvent properties”, Talanta, Vol. 46, (1998), pp. 595–606. http://dx.doi.org/10.1016/S0039-9140(97)00311-1[Crossref]
  • [12] L. Campanella, U. Martini, M.P. Sammartino and M. Tomassetti: “The Effect of Organic Solvent on a Catalase Enzyme Sensor for Monitoring Hydrogen Peroxide in Nonaqueous Solutions”, Electroanalysis, Vol. 8, (1996), pp. 1150–1154. http://dx.doi.org/10.1002/elan.1140081215[Crossref]
  • [13] L. Campanella, M.P. Sammartino, M. Tomassetti and S. Zannella: “Hydroperoxide determination by a catalase OPEE: application to the study of extra virgin olive oil rancidification process”, Sensors and Actuators B, Vol. 76, (2001), pp. 158–165. http://dx.doi.org/10.1016/S0925-4005(01)00615-3[Crossref]
  • [14] J. Wang, G. Rivas and J. Liu: “A catalase electrode for organic-phase enzymatic assays”, Anal. Lett., Vol. 28, (1995), pp. 2287–2295. [Crossref]
  • [15] E. Horozova, N. Dimcheva and Z. Jordanova: “Study of catalase electrode for organic peroxides assays”, Bioelectrochemistry, Vol. 58, (2002), pp. 181–187. http://dx.doi.org/10.1016/S1567-5394(02)00153-6[Crossref]
  • [16] N. Dimcheva, E. Horozova and T. Shougova: “The enzyme source effect on the performance of a catalase organic phase enzyme electrode”, Monats. fur Chemie, Vol. 136, (2005), pp. 147–152. http://dx.doi.org/10.1007/s00706-004-0233-3[Crossref]
  • [17] N. Dimcheva, E. Horozova and Z. Jordanova: “Decomposition of Cumene Hydroperoxide in Acetonitrile Catalyzed by Immobilized Catalase”, Bulgarian Chemistry and Industry, Vol. 75, (2004), pp. 1–7.
  • [18] E. Horozova, N. Dimcheva and Z. Jordanova: “Catalytic decomposition of 3-chloroperoxybenzoic acid by immobilized catalase in a non-aqueous medium”, Z. Naturforsch., Vol. 55C, (2000), pp. 55–59.
  • [19] E. Horozova, N. Dimcheva and Z. Jordanova: “Enzyme-catalyzed decomposition of dibenzoyl peroxide in organic solvents”, Z. Naturforsch, Vol. 56C, (2001), pp. 553–558.
  • [20] T. Aydemir and K. Kuru: “Purification and partial characterization of catalase from chicken erythrocytesand the effect of various inhibitors on enzyme activity”, Turk. J. Chem., Vol. 27, (2003), pp. 85–97.
  • [21] P. Chelikani, I. Fita and P. Loewen: “Diversity of structures and properties among catalases”, Cell. Mol. Life Sci., Vol. 61, (2004), pp. 192–208. http://dx.doi.org/10.1007/s00018-003-3206-5[Crossref]
  • [22] J. Keyhani, E. Keyhani and J. Kamali: “Thermal stability of catalases active in dormant saffron (Crocus sativus L.) corms”, In: 10th Meeting of the International Study Group of Biothermokinetics (BTK), 7–10 Sep. 2002, Bordeaux- Arcachon (http://www.rmsb.u-bordeaux2.fr/BTK/abstracts/25-KeyhaniJ.pdf).
  • [23] I.V. Berezin, N.L. Kliachko, A.V. Levashev, K. Martinek, V.V. Mojaev and Y. Khmelnitskii: Kinetic regularities in the catalysis with immobilized enzymes, Vishaya shkola, Moscow, 1987 (in Russian).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475996
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.