PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2003 | 1 | 3 | 463-473
Article title

Mechanism of Cu transport along clean Si surfaces

Content
Title variants
Languages of publication
EN
Abstracts
EN
Cu diffusion along clean Si(111), (110) and (100) surfaces are investigated by Auger electron spectroscopy and low energy electron diffraction. The effective diffusion coefficients of copper are measured in the temperature range from 500 to 650°C. It is shown that the Cu transport along silicon surface occurs by the diffusion of Cu atoms through Si bulk and the segregation of Cu atoms to the surface during the diffusion process. It is found that the segregation coefficients of Cu to silicon surface during the diffusion process depend on surface orientation.
Publisher

Journal
Year
Volume
1
Issue
3
Pages
463-473
Physical description
Dates
published
1 - 9 - 2003
online
1 - 9 - 2003
Contributors
author
  • Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russian Federation
author
  • Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russian Federation
  • Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russian Federation
References
  • [1] Yu.L. Gavrilyuk and V.G. Lifshits: “Effect of Surface Phases on the Diffusion of Gold on Silicon”, Poverkhnost, Vol. 4, (1983), pp. 82–89.
  • [2] A.E. Dolbak, B.Z. Olshanetsky, S.I. Stenin, S.A. Teys, T.A. Gavrilova: “Effect of Nickel on Clean Silicon Surfaces: Transport and Structure”, Surf. Sci., Vol. 218, (1989), pp. 37–54. http://dx.doi.org/10.1016/0039-6028(89)90619-5[Crossref]
  • [3] A.E. Dolbak, B.Z. Olshanetskii, S.A. Tiis: “The Interaction of Cobalt with Clean Si(100) and (110) Surfaces”, Poverkhnost, Vol. 11, (1996), pp. 29–38.
  • [4] M.Y. Lee and P.A. Bennett: “Bulk Versus Surface Transport of Nickel and Cobalt on Silicon”, Phys. Rev. Lett., Vol. 75, (1995), pp. 4460–4463. http://dx.doi.org/10.1103/PhysRevLett.75.4460[Crossref]
  • [5] E. Daugy, P. Mathiez, F. Salvan, J.M. Layet: “7×7 Si(111)-Cu Interfaces: Combined LEED, AES and EELS Measurements”, Surf. Sci., Vol. 154, (1985), pp. 267–283. http://dx.doi.org/10.1016/0039-6028(85)90365-6[Crossref]
  • [6] M. Mundschau, E. Bauer, W. Telieps, W.J. Swiech: “Initial Epitaxial Growth of Copper Silicide on Si(111) Studied by Low-Energy Electron Microscopy and Photoemission Electron Microscopy”, Appl. Phys., Vol. 65, (1989), pp. 4747–4752. http://dx.doi.org/10.1063/1.343227[Crossref]
  • [7] S.A. Chambers and J.H. Weaver: “Thermally Induced Structural and Compositional Modification of the Cu/Si(111)-7×7 Interface”, J. Vac. Sci. Technol., Vol. A3, (1985), pp. 1929–1934. http://dx.doi.org/10.1116/1.572947[Crossref]
  • [8] L. Calliari, F. Marchetti, M. Sancrotti: “Metastability of the Si(111)/Cu Interface: A Spatially Resolved Auger Line-Shape Spectroscopy Investigation”, Phys. Rev., Vol. B34, (1986), pp. 521–525. http://dx.doi.org/10.1103/PhysRevB.34.521[Crossref]
  • [9] H. Dallaporta and A. Cross: “Atomic Bonding at the Si−Au and Si−Cu Interfaces”, Surf. Sci., Vol. 178, (1986), pp. 64–69. http://dx.doi.org/10.1016/0039-6028(86)90281-5[Crossref]
  • [10] R.J. Wilson, S. Chiang, F. Salvan: “Examination of the Cu/Si(111) 5×5 Structure by Scanning Tunneling Microscopy”, Phys. Rev., Vol. B38, (1988), pp. 12696–12699. http://dx.doi.org/10.1103/PhysRevB.38.12696[Crossref]
  • [11] D.D. Chamblis and T.N. Rhodin: “Electronic and Atomic Structure of the Cu/Si(111) Quasi-5×5 Overlayer”, Phys. Rev., Vol. B42, (1990), pp. 1674–1683. http://dx.doi.org/10.1103/PhysRevB.42.1674[Crossref]
  • [12] J. Nichols, F. Salvan, B. Reihl: “Surface States of Ordered Au, Ag, and Cu Overlayers on Si(111) Studied by Inverse Photoemission”, Phys. Rev., Vol. B34, (1986), pp. 2945–2948. http://dx.doi.org/10.1103/PhysRevB.34.2945[Crossref]
  • [13] T. Ikeda, Y. Kawashima, H. Itoh, T. Ichinokawa: “Surface Structures and Growth Mode for the Cu/Si(110) Surfaces Depending on Heat Treatment”, Surf. Sci., Vol. 342, (1995), pp. 11–20. http://dx.doi.org/10.1016/0039-6028(95)00765-2[Crossref]
  • [14] T. Ikeda, Y. Kawashima, H. Itoh, T. Ichinokawa: “Surface Structures and Growth Mode of the Cu/Si(100)2×1 Surface Depending on Heat Treatment”, Surf. Sci., Vol. 336, (1995), pp. 76–84. http://dx.doi.org/10.1016/0039-6028(95)00400-9[Crossref]
  • [15] A.E. Dolbak, R.A. Zhachuk, B.Z. Olshanetsky: “Mechanism of Copper Diffusion over the Si(110) Surface”, Semiconductors, Vol. 36, (2002), pp. 958–961. http://dx.doi.org/10.1134/1.1507271[Crossref]
  • [16] P.W. Palmberg, G.E. Riach, R.E. Weber, N.C. Mac-Donnald: Handbook of Auger Electron Spectroscopy, Physical Electronics Industries Inc., Minnesota, 1972.
  • [17] Eicke R., Weber: “Transition Metals in Silicon”, Appl. Phys., Vol. A30, (1983), pp. 1–22.
  • [18] Andrei A Istratov, Ch. Flink, H. Hieslmair, Eicke R. Weber: “Intrinsic Diffusion Coefficient of Interstitial Copper in Silicon”, Phys. Rev. Lett., Vol. 81, (1998), pp. 1243–1246. http://dx.doi.org/10.1103/PhysRevLett.81.1243[Crossref]
  • [19] A.E. Dolbak, B.Z. Olshanetsky, S.A. Teys: “Mechanisms of Ni Diffusion at Silicon Surface”, Phys. of Low-Dim. Struct., Vol. 11/12, (1999), pp. 41–52.
  • [20] A.E. Dolbak, B.Z. Olshanetsky, R.A. Zhachuk: “On Ni Diffusion at Si(111) Surface at Fe Coadsorption”, Phys. of Low-Dim. Struct., Vol. 9/10, (1998), pp. 97–104.
  • [21] A.E. Dolbak, B.Z. Olshanetskii, S.A. Tiis, R.A. Zhachuk: “Change in the Nature of the Ni Diffusion Mechanism on the Si(111) Surface with Adsorption of Co Atoms”, JETP Lett., Vol. 66, (1997), pp. 643–646. http://dx.doi.org/10.1134/1.567574[Crossref]
  • [22] A.E. Dolbak, B.Z. Olshanetskii, S.A. Tiis: “Mechanism of the Transport of Nickel along a Si(111) Surface in the Presence of Adsorbed Cobalt Atoms”, JETP Lett., Vol. 69, (1999), pp. 459–461. http://dx.doi.org/10.1134/1.568051[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02475857
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.