Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 3 | 395-408

Article title

Study of solid-solution hardening in binary aluminium-based alloys


Title variants

Languages of publication



Solid-solution formation in binary aluminium-based alloys is due essentially to the combined effects of the size and valence of solvent and solute atoms, as expected by the four Hume-Rothery rules. The lattice parameter of aluminium in the solid solution of the sputtered Al−Fe films is [Al-a (Å)=4.052−6.6×10−3Y]. The increasing and decreasing evolution of the lattice parameter of copper [Cu-a (Å)=3.612+1.8×10−3Z] and aluminium [Al-a (Å)=4.048−1.6×10−3X] in the sputtered Al-1.8 to 92.5 at. % Cu films is a result of the difference in size between the aluminium and copper atoms. The low solubility of copper in aluminium (<1.8 at % Cu) is due to the valences of solvent and solute atoms in contrast with other sputtered films prepared under similar conditions, such as Al−Mg (20 at. % Mg), Al−Ti (27 at. % Ti), Al−Cr (5at. % Cr) and Al−Fe (5.5 at. % Fe) where the solubility is due to the difference in size.










Physical description


1 - 9 - 2005
1 - 9 - 2005


  • Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, BP 12 Annaba, 23000, Algérie
  • Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, BP 12 Annaba, 23000, Algérie


  • [1] M. Draissia: Structure et physico-chimie des dépôts métastables aluminium-cuivre élaborés par pulvérisation cathodique magnétron, Thesis (PhD) Université Badji-Mokhtar Annaba (Algérie), 2004.
  • [2] M. Draissia, H. Boudemagh and M.Y. Debili: “Structure and Hardness of the Sputered Al−Cu Thin Films System”, Physica Scripta, Vol. 69, (2004), pp. 348–350. http://dx.doi.org/10.1238/Physica.Regular.069a00348[Crossref]
  • [3] M. Draissia and M.Y. Debili: “Atomic size effects on the hardness of r.f. Sputtered Al−Cu(Rich) thin films”, Journal of Crystal Growth, Vol. 270, (2004), pp. 250–254. http://dx.doi.org/10.1016/j.jcrysgro.2004.06.003[Crossref]
  • [4] R.D. Arnell and R.I. Bates: “The deposition of highly supersaturated metastable aluminium-magnesium by unbalanced magnetron sputtering from composite target”, Vacuum, Vol. 43, (1992), pp. 105–109. http://dx.doi.org/10.1016/0042-207X(92)90193-Z[Crossref]
  • [5] F. Sanchette, Tran Huu Loï and C. Frantz: “Structure-properties relationship of metastable Al−Cr and Al−Ti alloys deposited by r.f. magnetron sputtering: role of nitrogen”, Surf. Coat. Technol., Vol. 74–75, (1995), pp. 903–909. http://dx.doi.org/10.1016/0257-8972(94)08210-3[Crossref]
  • [6] F. Sanchette, Tran Huu Loï, A. Billard and C. Frantz: “Deposition of metastable aluminium-chromium alloys by r.f. magnetron sputtering from mixed-powder targets”, Surf. Coat. Technol., Vol. 57, (1993), pp. 179–182. http://dx.doi.org/10.1016/0257-8972(93)90037-O[Crossref]
  • [7] M.Y. Debili, Tran Huu Loï and C. Frantz: “Caractérisation chimique et structurale de dépôts métastables aluminium-fer obtenus par pulvérisation cathodique magnétron”, La revue de Métallurgie-CIT/Science et Génie des Matériaux, Vol. 12, (1998), pp. 1501–1509.
  • [8] Unpublished results: M. Draissia, H. Boudemagh and M.Y. Debili: “Observation d’une démixtion dans des films minces nanostructurés Al-66.64 at.%Cu obtenus par dépôt physique en phase vapeur (PVD)”, presented at the conference: The 3rd Int. Cong. on Mat. Sci. & Eng., Jijel (Algérie) 25–27 May 2004.
  • [9] Unpublished results: M. Draissia, H. Boudemagh and M.Y. Debili: “Unexpected phase separation in magnetron sputter-deposited Al−Cu thin films system”, presented at the conference: IX mes Journées Maghrébines des Sciences des Matériaux JMSM, Oran (Algérie) 8–10 May 2004.
  • [10] Unpublished results: M. Draissia and M.Y. Debili: “Corrosion behaviour of nanostructured aluminium-based alloys”, presented at the conference: 7 mes Journées Francophones des Jeunes Physico-Chimistes, Monastir (Tunisie) 19–21 March 2004.
  • [11] Unpublished results: M. Draissia, M.Y. Debili and J.P. Millet: “Structural and chemical properties of sputtered Al−Cu deposits”, presented at the conference: Eurocorr 2004, Nice (France) 12–16 September 2004.
  • [12] J. Axon and W. Hume-Rothery: Proc. Roy. Soc. A, Vol. 193, (1948), p. 1.
  • [13] C. Ellwood and J.M. Silcock: J. Ins. Met., Vol. 74, (1948), p. 457.
  • [14] A.J. Bradley and H.J. Goldschmidt: J. Inst. Met., Vol. 65, (1939), p. 389.
  • [15] I. Obinata and J. Wassermann: Naturwiss, Vol. 21, (1933), p. 382. http://dx.doi.org/10.1007/BF01451794[Crossref]
  • [16] H. Stirling and G.V. Raynor: Private communication and J. Inst. Met, Vol. 84, (1955), p. 57.
  • [17] V. Fournée, I. Mazin, D.A. Papaconstantapoulos and E. Belin-Ferré: “Electronic structure calculations of Al−Cu alloys: comparison with experimental results on Hume-Rothery pahases”, Philosophical Magazine B, Vol. 79(2), (1999), pp. 205–221. http://dx.doi.org/10.1080/014186399257320[Crossref]
  • [18] R.W.K. Honeycombe: The Plastic Deformation of Metals, 2nd ed., Arnold, UK, 1984.
  • [19] M. Draissia, N. Boukhris and M.Y. Debili: “Thermomechanical behavior of rapidly solidified Fe-25Cr-20Ni”, Materials Science Forum, Vol. 467–470, (2004), pp. 247–250. http://dx.doi.org/10.4028/www.scientific.net/MSF.467-470.247[Crossref]
  • [20] H. Wang, M.J. Zaluzec and J.M. Rigsbee: “Microstructure and Mechanical Properties of Sputter-Deposited Cu1−x Tax Alloys”, Metall. Trans. A, Vol. 28, (1997), pp. 917–925.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.