Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 17 | 3 | 84-88

Article title

Studies on the production of glucose isomerase by Bacillus licheniformis

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein). Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively). The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein). Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein). In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein) while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein). The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.

Publisher

Year

Volume

17

Issue

3

Pages

84-88

Physical description

Dates

published
1 - 9 - 2015
online
19 - 9 - 2015

Contributors

  • University of Nigeria, Industrial Microbiology and Biotechnology Laboratory, Department of Microbiology, Nsukka, Nigeria

References

  • 1. Bhosale, S.H., Rao, M.B. & Deshpande, V.V. (1996). Molecular and industrial aspects of glucose isomerase. Microbiol. Rev. 60, 280–300. PMID 8801434.
  • 2. Priya, C. & Virendra, S.B. (2000). Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol. Biotechnol. Bioproc. Engineering 5, 32–39. DOI: 10.1007/BFO2932350.[Crossref]
  • 3. Silva, E.A.B, Souza, A.A.U., Rodrigues, A.E. & Guelli, S.M.A. (2006). Glucose isomerisation in simulated moving bed reactor by glucose isomerase. Braz. Arch Biol Technol. 49: 491–502. [Crossref]
  • 4. Lawal, A.K., Banjoko, A.M., Banjoko, A.M., Osikoyia, A.F., Olatope, S.O., Kayode, O.F., Etoamihe, M., Emoleila., I., Alebiosu, F.A., Majolagbe, Y.L, Shittu, K.A, Buhari, F. & Dike, E.N. (2012). Production and optimal performance studies of glucose isomerase from agriculture raw material Global Adv. Res. J. Microbiol. 1(7), 108–119.
  • 5. Angardi, V. & Calik, P. (2013). Beet molasses based exponential feeding strategy for thermostable glucose isomerase production by recombinant Escherichia coli BL21 (DE3). J. Chem. Technol. Biotechnol. 88(5), 845–852. DOI: 10.1002/jctb.3910.[Crossref][WoS]
  • 6. Akdag, B. & Calik, P. (2014). Recombinant protein production by sucrose-utilizing Escherichia coli W: untreated beet molasses-based feeding strategy development. J. Chem. Technol. Biotechnol. DOI: 10.1002/jctb.4411.[Crossref]
  • 7. Ata, O., Boy, E., Gunes, H. & Calik, P. (2014). Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. Bioproc. Biosyst. Engineering. DOI: 10.1007/s00449-014-1333.[Crossref][WoS]
  • 8. Dhungel, B., Subedi, M., Tiwari, K.B., Shrestha, U.T., Pokhrel, S. & Agrawal, V.P. (2007). The thermostable glucose isomerase from psychrotolerant Streptomyces species. Int. J. Life Sci 1, 6–10. DOI: 10.3126/ijls.v1i0.2300.[Crossref]
  • 9. Lee, C. & Zeikus, J.G. (1991). Purification and characterization of thermostable glucose isomerase from Clostridium thermosulfurogenes and Thermoanaerobacter strain B6A. Biochem. J. 274, 565–571.
  • 10. Bray, G.A., Nielsen, S.J. & Popken, B.M. (2004). Consumption of high – fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J.Clin. Nutr. 79, 537–543. PMID 15051594.
  • 11. Gromada, A., Fiedurek, J. & Szczodrak, J. (2008). Isoglucose production from raw strachy materials based on a two-stage enzymatic system. Pol. J. Microbiol. 57(2), 141–148.
  • 12. Gaily, M.H., Sulieman, A.K. & Abasaeed, A.E. (2013). Kinetics of a three – step isomerization of glucose to fructose using immobilized enzyme. International J. Chem. Engine. Applic. 4(1), 31–34. DOI:10.7763/IJCEA.2013.V4.255.[Crossref]
  • 13. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley J.T. & Williams, S.T. (1994). Bergey’s Manual of Determinative Bacteriology (9th ed.) Baltimore: Williams and Wilkins.
  • 14. Kulka, R.G. (1956). Colorimetric estimation of ketopentoses and ketohexoses. Biochem J. 63, 542–548. PMID 13355847.
  • 15. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with folin- phenol reagent. J. Biochem. 193, 265–275. PMID 14907713.
  • 16. Deshmukh, S.S., Deshpande, M.V. & Shankar, V. (1994). Medium optimization for the production of glucose isomerase from thermophilic Streptommsces thermonitrificans. World J. Microbiol. Biotechnol. 10, 264–267. Doi: 10.1007/BF00414859.[Crossref]
  • 17. Chou, C.C., Ladisch, M.R. & Tsao, G.T. (1976). Studies on glucose isomerase from Streptomyces species. Appl. Environ. Microbiol. 32(4), 489–493. PMID 984827.
  • 18. Chen, W.P., Anderson A.W. & Han Y.W. (1979). Purification of glucose isomerase by Streptomyces flarogriseus. Appl. Environ. Microbiol. 37, 324–331. PMID 16345347.
  • 19. Wong, H.C., Ting, Y., Lin, H.C., Reichert, F. & Myambo, K. (1991). Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J. Bacteriol. 173, 6849–6858. PMID 1657868.
  • 20. Kwakman, J.H.J.M. & Postma, P.W. (1994). Glucose kinase has a regulatory role in catabolite repression in Streptomyces coelicor. J. Bacteriol. 176, 2694–2698. PMID 8169219.
  • 21. Yassien, M.A.M. & Jiman-Fatani, A.A.M. (2012). Optimization of glucose isomerase production by Streptomyces albaduncus. Afr. J. Microbiol. Res. 6, 2976–2984. DOI:10.5897/AJMR12.016.[Crossref]
  • 22. Whitlow, M., Howard, A.J., Finzel, B.C., Poulos, T.L., Winborne, E. & Gilliland, G.L. (1991). A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6A Streptomyces rubiginosus structures with xylitol and D-xylose. Proteins 9, 153–173. DOI: 10.1002/prot.340090302.[Crossref]
  • 23. Kasumi T., Hayashi, K. & Tsumura, N. (1980). Purification and enzymatic properties of glucose isomerase from Streptomyces griseofuscus S-41. Agric. Biol. Chem. 45, 1087–1095.
  • 24. Ryu, D.Y., Chung, S.H. & Katoh, K. (1977). Performance of the continuous glucose isomerase reactor systems for the production of fructose syrup. Biotechnol. Bioeng. 19, 159–184. DOI: 10.1002/bit.260190202.[Crossref]
  • 25. Kitada, M., Dobshi, Y. & Horikoshi, K. (1989). Enzymatic properties of purified D-xylose isomerase from a thermophilic alkalophile Bacillus TX-3. Agric Biol. Chem. 53(6), 1461–1468. DOI: 10.1271/bbb1961.53.1461.[Crossref]
  • 26. Danno, G.L. (1970). Studies on D-glucose-isomerizing enzyme from Bacillus coagulans strain HN-68. Agric. Biol. Chem. 34, 1805–1814.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_pjct-2015-0054
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.