Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5). The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR) system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.
Journal
Year
Volume
Issue
Pages
523-529
Physical description
Dates
published
1 - 9 - 2015
online
25 - 9 - 2015
Contributors
author
- Department of Nuclear Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland, Tel.: +48 12 617 2954, gkepisty@agh.edu.pl
author
- Department of Nuclear Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland, Tel.: +48 12 617 2954
References
- 1. Dufek, J., & Hoogenboom, J. E. (2009). Numerical stability of existing Monte Carlo burnup codes in cycle calculations of critical reactors. Nucl. Sci. Eng., 162(3), 307-311. DOI: 10.13182/NSE08-69TN.[Crossref]
- 2. Cetnar, J., Kopeć, M., & Oettingen, M. (2013). Advanced fuel burnup assessment in prismatic HTR for Pu/MA/Th utilization - using MCB system. Kraków: AGH-UST.
- 3. Dufek, J., Kotlyar, D., & Shwageraus, E. (2013). The stochastic implicit Euler method - A stable coupling scheme for Monte Carlo burnup calculations. Ann. Nucl. Energy, 60, 295-300. DOI: 10.1016/j.anucene.2013.05.015.[Crossref][WoS]
- 4. Cetnar, J., Gudowski, W., & Wallenius, J. (1999). MCB: A continuous energy Monte Carlo burnup simulation code. In Actinide and fi ssion product partitioning and transmutation (p. 523). OECD/ NEA. (EUR 18898 EN).
- 5. Isotalo, A. E., & Aarnio, P. A. (2011). Comparison of depletion algorithms for large systems of nuclides. Ann. Nucl. Energy, 38, 261-268. DOI: 10.1016/j. anucene.2010.10.019.[WoS][Crossref]
- 6. Grisell, A. (2004). Validation of Monte-Carlo Continuous Energy Burnup Code (MCB) on Light Water Reactor Fuel. Master of Science Thesis, Department of Nuclear and Reactor Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden.
- 7. Dufek, J., Kotlyar, D., Shwageraus, E., & Leppänen, J. (2013). Numerical stability of the predictor-corrector method in Monte Carlo burnup calculations of critical reactors. Ann. Nucl. Energy, 56, 34-38. DOI: 10.1016/j.anucene.2013.01.018.[Crossref][WoS]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0095