Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 3 | 523-529

Article title

Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5). The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR) system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

Publisher

Journal

Year

Volume

60

Issue

3

Pages

523-529

Physical description

Dates

published
1 - 9 - 2015
online
25 - 9 - 2015

Contributors

  • Department of Nuclear Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland, Tel.: +48 12 617 2954
author
  • Department of Nuclear Engineering, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland, Tel.: +48 12 617 2954

References

  • 1. Dufek, J., & Hoogenboom, J. E. (2009). Numerical stability of existing Monte Carlo burnup codes in cycle calculations of critical reactors. Nucl. Sci. Eng., 162(3), 307-311. DOI: 10.13182/NSE08-69TN.[Crossref]
  • 2. Cetnar, J., Kopeć, M., & Oettingen, M. (2013). Advanced fuel burnup assessment in prismatic HTR for Pu/MA/Th utilization - using MCB system. Kraków: AGH-UST.
  • 3. Dufek, J., Kotlyar, D., & Shwageraus, E. (2013). The stochastic implicit Euler method - A stable coupling scheme for Monte Carlo burnup calculations. Ann. Nucl. Energy, 60, 295-300. DOI: 10.1016/j.anucene.2013.05.015.[Crossref][WoS]
  • 4. Cetnar, J., Gudowski, W., & Wallenius, J. (1999). MCB: A continuous energy Monte Carlo burnup simulation code. In Actinide and fi ssion product partitioning and transmutation (p. 523). OECD/ NEA. (EUR 18898 EN).
  • 5. Isotalo, A. E., & Aarnio, P. A. (2011). Comparison of depletion algorithms for large systems of nuclides. Ann. Nucl. Energy, 38, 261-268. DOI: 10.1016/j. anucene.2010.10.019.[WoS][Crossref]
  • 6. Grisell, A. (2004). Validation of Monte-Carlo Continuous Energy Burnup Code (MCB) on Light Water Reactor Fuel. Master of Science Thesis, Department of Nuclear and Reactor Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden.
  • 7. Dufek, J., Kotlyar, D., Shwageraus, E., & Leppänen, J. (2013). Numerical stability of the predictor-corrector method in Monte Carlo burnup calculations of critical reactors. Ann. Nucl. Energy, 56, 34-38. DOI: 10.1016/j.anucene.2013.01.018.[Crossref][WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0095
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.