Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 2 | 327-330

Article title

Operation modes of the FALCON ion source as a part of the AMS cluster tool

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper investigates the options to increase the production yield of temperature compensated surface acoustic wave (SAW) devices with a defined range of operational frequencies. The paper focuses on the preparation of large wafers with SiO2 and AlN/Si3N4 depositions. Stability of the intermediate SiO2 layer is achieved by combining high power density UV radiation with annealing in high humidity environment. A uniform thickness of the capping AlN layer is achieved by local high-rate etching with a focused ion beam emitted by the FALCON ion source. Operation parameters and limitations of the etching process are discussed.

Keywords

Publisher

Journal

Year

Volume

60

Issue

2

Pages

327-330

Physical description

Dates

published
1 - 6 - 2015
received
19 - 5 - 2014
online
22 - 6 - 2015
accepted
5 - 5 - 2015

Contributors

author
  • V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022, Kharkiv, Ukraine
  • V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022, Kharkiv, Ukraine
author
  • V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022, Kharkiv, Ukraine
  • Micron Surface Technologies, 5033 Dantes View Drive, Calabasas, CA 91301, United States
author
  • Advanced Modular Systems, Inc, 354 South Fairview Ave., B1, Goleta, CA 93117, United States

References

  • 1. Mishin, S. (2011). Improving manufacturability of bulk acoustic wave and surface acoustic wave devices. In Joint European Frequency and Time Forum and International Frequency Control Symposium, 9–11 December 2011 (pp. 110–112). EFTF/IFC PP. DOI: 10.1109/SPAWDA.2011.6167203.[Crossref]
  • 2. Willingham, C. B., Parker, T. E., & Spooner, F. H. (1976). U.S. Patent no. 3,965,444. Washington, D.C.: U.S. Patent and Trademark Office.
  • 3. Jacobs, I. S., & Bean, C. P. (1963). In G. T. Rado & H. Suhl (Eds.), Magnetism (Vol. 3, pp. 271–350). New York: Academic Press.
  • 4. Haque, M. S., Naseem, H. A., & Brown, W. D. (1997). Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability. Thin Solid Films, 308/309, 68–73. DOI: 10.1016/S0040-6090(97)00542-7.[Crossref]
  • 5. Bizyukov, A. A., Bizyukov, I. A., Girka, O. I., Sereda, K. N., Sleptsov, V. V., Gutkin, M., & Mishin, S. (2011). Ion beam system for nanotrimming of functional microelectronics layers. Problems of Atomic Science and Technology, Seria: Plasma Phys., 1(17), 110–112.
  • 6. Mishin, S., Gutkin, M., Bizyukov, A., & Sleptsov, V. (2013). Method of controlling coupling coefficient of aluminum scandium nitride deposition in high volume production. In Joint European Frequency and Time Forum and International Frequency Control Symposium (pp. 126–128). EFTF/IFC. DOI: 10.1109/EFTF-IFC.2013.6702105.[Crossref]
  • 7. Gutkin, M., Bizyukov, A., Sleptsov, V., Bizyukov, I., & Sereda, K. (2009). U.S. Patent no. 7,622,721 B2. Washington, D.C.: U.S. Patent and Trademark Office.
  • 8. Girka, O., Bizyukov, I., Sereda, K., Bizyukov, A., Gutkin, M., & Sleptsov, V. (2012). Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials. Rev. Sci. Instrum., 83(8), 083501. DOI: 10.1063/1.4740519.[Crossref][WoS]
  • 9. Zhurin, V. V., Kaufman, H. R., & Robinson, R. S. (1999). Physics of closed drift thrusters. Plasma Sources Sci. Technol., 8(1), R1–R20. DOI: 10.1088/0963-0252/8/1/021.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0059
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.