Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |

Article title

Selective adsorption of trypsin using molecularly
imprinted polymers prepared with PEG-based
hydrogels containing anionic functional


Title variants

Languages of publication



Molecularly imprinting (MI) hydrogels for
selective adsorption of trypsin are reported. The trypsin
imprinted hydrogels were prepared using a polyethylene
glycol (PEG)-based dimethacrylate as a crosslinker and
anionic functional monomers. The hydrogel prepared
without any functional monomers showed significantly
low ability to adsorb a variety of proteins. We optimized
the concentration and the length of PEG units of the
crosslinkers to achieve the complete removal of the template
molecule and suitable selective adsorption. Additionally,
the functional monomers chosen were anionic since the
template, trypsin, is a basic protein. The adsorption tests
for proteins, done on the prepared MI gels, indicated
that the MI gel prepared with sodium allyl sulfonate (AS)
as a functional monomer showed much higher selective
adsorption for trypsin, even though a mixture of trypsin
and cytochrome c was used as the protein solution. The
selective adsorption was more effective in a NaCl solution
in which the non-specific adsorption by a sulfonate is
suppressed, similarly to our findings in a previous study.
The MI gel prepared with acrylic acid also showed the
selectivity, although the adsorption strength was lower
than that of the MI gel containing AS. We believe that the
present study constitutes the first approach for the selective
adsorption of trypsin using PEG-based hydrogels.







Physical description


11 - 2 - 2016
31 - 7 - 2015
8 - 8 - 2015


  • Graduate School of
    Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
  • Graduate School of
    Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
  • Graduate School of
    Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,
  • Graduate School of
    Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510,


  • [1] Fischer L., Muller, R., Ekberg, B., Mosbach, K., Direct enatioseparationof beta-adrenergic blockers using a chiral stationaryphase prepared by molecular imprinting, J. Am. Chem. Soc.,1991, 113, 9358-60.
  • [2] Vlatakis G., Andersson, L.I., Muller, R., Mosbach, K., Drugassay using antibody mimics by molecular imprinting, Nature,1993, 361, 645-47.
  • [3] Kempe M., Mosbach, K., Direct resolution of naproxen on anoncovalently molecularly imprinted chiral stationary-phase, J.Chromatogr. A, 1994, 664, 276-79.
  • [4] Mosbach K., Molecular imprinting, Trends Biochem. Sci., 1994,19, 9-14.[Crossref]
  • [5] Andersson L.I., Muller, R., Vlatakis, G., Mosbach, K., Mimicsof the binding sites of opioid receptors obtained by molecularimprinting of enkephalin and morphine, Proc. Natl. Acad. Sci.U.S.A, 1995, 92, 4788-92.
  • [6] Kriz D., Mosbach, K., Competitive amperometric morphinesensor-based on an agarose immobilized molecularlyimprinted polymer, Anal. Chim. Acta, 1995, 300, 71-75.
  • [7] Shi H.Q., Tsai, W.B., Garrison, M.D., Ferrari, S., Ratner, B.D.,Template-imprinted nanostructured surfaces for proteinrecognition, Nature, 1999, 398, 593-97.
  • [8] Katz A., Davis, M.E., Molecular imprinting of bulk, microporoussilica, Nature, 2000, 403, 286-89.
  • [9] Nicholls I.A., Andersson, H.S., Charlton, C., Henschel, H.,Karlsson, B.C.G., Karlsson, J.G., O’mahony, J., Rosengren, A.M.,Rosengren, K.J., Wikman, S., Theoretical and computationalstrategies for rational molecularly imprinted polymer design,Biosens. Bioelectron., 2009, 25, 543-52.[Crossref][WoS]
  • [10] Beltran A., Borrull, F., Cormack, P.a.G., Marce, R.M.,Molecularly-imprinted polymers: useful sorbents for selectiveextractions, Trac-Trend. Anal. Chem., 2010, 29, 1363-75.[Crossref]
  • [11] Chen L.X., Xu, S.F., Li, J.H., Recent advances in molecularimprinting technology: current status, challenges andhighlighted applications, Chem. Soc. Rev., 2011, 40, 2922-42.[Crossref][WoS]
  • [12] Whitcombe M.J., Chianella, I., Larcombe, L., Piletsky, S.A.,Noble, J., Porter, R., Horgan, A., The rational developmentof molecularly imprinted polymer-based sensors for proteindetection, Chem. Soc. Rev., 2011, 40, 1547-71.[Crossref]
  • [13] Cakir P., Cutivet, A., Resmini, M., Bui, B.T.S., Haupt, K.,Protein-Size Molecularly Imprinted Polymer Nanogels asSynthetic Antibodies, by Localized Polymerization with Multiinitiators,Adv. Mater., 2013, 25, 1048-51.[WoS]
  • [14] Inoue Y., Kuwahara, A., Ohmori, K., Sunayama, H., Ooya,T., Takeuchi, T., Fluorescent molecularly imprinted polymerthin films for specific protein detection prepared with dansylethylenediamine-conjugated O-acryloyl L-hydroxyproline,Biosens. Bioelectron., 2013, 48, 113-19.[Crossref][WoS]
  • [15] Ma Y., Pan, G.Q., Zhang, Y., Guo, X.Z., Zhang, H.Q., NarrowlyDispersed Hydrophilic Molecularly Imprinted PolymerNanoparticles for Efficient Molecular Recognition in RealAqueous Samples Including River Water, Milk, and BovineSerum, Angew. Chem. Int. Ed., 2013, 52, 1511-14.[Crossref][WoS]
  • [16] Mathur A., Blais, S., Goparaju, C.M.V., Neubert, T., Pass, H.,Levon, K., Development of a Biosensor for Detection of PleuralMesothelioma Cancer Biomarker Using Surface Imprinting,Plos One, 2013, 8, e57681.
  • [17] Moczko E., Guerreiro, A., Piletska, E., Piletsky, S.,PEG-Stabilized Core-Shell Surface-Imprinted Nanoparticles,Langmuir, 2013, 29, 9891-96.[Crossref]
  • [18] Orozco J., Cortes, A., Cheng, G.Z., Sattayasamitsathit, S., Gao,W., Feng, X.M., Shen, Y.F., Wang, J., Molecularly ImprintedPolymer-Based Catalytic Micromotors for Selective ProteinTransport, J. Am. Chem. Soc., 2013, 135, 5336-39.[WoS]
  • [19] Poma A., Guerreiro, A., Whitcombe, M.J., Piletska, E.V., Turner,A.P.F., Piletsky, S.A., Solid-Phase Synthesis of MolecularlyImprinted Polymer Nanoparticles with a Reusable Template-”Plastic Antibodies”, Adv. Funct. Mater., 2013, 23, 2821-27.[Crossref][WoS]
  • [20] Hsu C.-Y., Lin, H.-Y., Thomas, J.L., Chou, T.-C., Synthesis ofand recognition by ribonuclease A imprinted polymers,Nanotechnology, 2006, 17, S77.[Crossref]
  • [21] Hsu C.-Y., Lin, H.-Y., Thomas, J.L., Wu, B.-T., Chou, T.-C.,Incorporation of styrene enhances recognition of ribonucleaseA by molecularly imprinted polymers, Biosens. Bioelectron.,2006, 22, 355-63.[Crossref]
  • [22] Lin H.-Y., Hsu, C.-Y., Thomas, J.L., Wang, S.-E., Chen, H.-C.,Chou, T.-C., The microcontact imprinting of proteins: The effectof cross-linking monomers for lysozyme, ribonuclease A andmyoglobin, Biosens. Bioelectron., 2006, 22, 534-43.[Crossref]
  • [23] Lin H.-Y., Rick, J., Chou, T.-C., Optimizing the formulationof a myoglobin molecularly imprinted thin-film polymer-formed using a micro-contact imprinting method, Biosens.Bioelectron., 2007, 22, 3293-301.[WoS][Crossref]
  • [24] El Kirat K., Bartkowski, M., Haupt, K., Probing the recognitionspecificity of a protein molecularly imprinted polymer usingforce spectroscopy, Biosens. Bioelectron., 2009, 24, 2618-24.[WoS][Crossref]
  • [25] Su W.-X., Rick, J., Chou, T.-C., Selective recognition ofovalbumin using a molecularly imprinted polymer, Microchem.J., 2009, 92, 123-28.
  • [26] Tominaga Y., Kubo, T., Sueyoshi, K., Hosoya, K., Otsuka, K.,Synthesis of poly(ethylene glycol)-based hydrogels and theirswelling/shrinking response to molecular recognition, J.Polym. Sci., Part A: Polym. Chem., 2013, 51, 3153-58.
  • [27] Kubo T., Oketani, M., Tominaga, Y., Naito, T., Otsuka, K.,Tunable Molecular Sieving in Gel Electrophoresis Using a Poly(ethylene glycol)-Based Hydrogel, Chromatography, 2014, 35,81-86.
  • [28] Kubo T., Arimura, S., Tominaga, Y., Naito, T., Hosoya, K.,Otsuka, K., Molecularly Imprinted Polymers for SelectiveAdsorption of Lysozyme and Cytochrome c Using a PEG-BasedHydrogel: Selective Recognition for Different ConformationsDue to pH Conditions, Macromolecules, 2015, 48, 4081-87.[WoS][Crossref]
  • [29] Hayden O., Haderspöck, C., Krassnig, S., Chen, X., Dickert,F.L., Surface imprinting strategies for the detection of trypsin,Analyst, 2006, 131, 1044-50.
  • [30] Cutivet A., Schembri, C., Kovensky, J., Haupt, K., Molecularlyimprinted microgels as enzyme inhibitors, J. Am. Chem. Soc.,2009, 131, 14699-702.
  • [31] Reddy S.M., Phan, Q.T., El-Sharif, H., Govada, L., Stevenson, D.,Chayen, N.E., Protein crystallization and biosensor applicationsof hydrogel-based molecularly imprinted polymers, Biomacromolecules,2012, 13, 3959-65.[Crossref][WoS]
  • [32] Ambrosini S., Beyazit, S., Haupt, K., Bui, B.T.S., Solid-phasesynthesis of molecularly imprinted nanoparticles for proteinrecognition, Chem. Commun., 2013, 49, 6746-48.[WoS][Crossref]
  • [33] Zhang H., Jiang, J., Zhang, H., Zhang, Y., Sun, P., Efficientsynthesis of molecularly imprinted polymers with enzymeinhibition potency by the controlled surface imprintingapproach, ACS Macro Letters, 2013, 2, 566-70.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.