Preferences help
enabled [disable] Abstract
Number of results
2006 | 4 | 1 | 105-116
Article title

Structural study of TiO2 thin films by micro-Raman spectroscopy

Title variants
Languages of publication
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.
Physical description
1 - 3 - 2006
1 - 3 - 2006
  • [1] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame: “Rutile-type TiO2 thin film for high-k gate insulator”, Thin Solid Films, Vol. 424, (2003), pp. 224–228.[Crossref]
  • [2] M. Bibes, M. Bowen, A. Barthélémy, A. Anane, K. Bouzehoune, C. Carrétéro, E. Jacquet and J.-P. Contour: “Growth and characterization of TiO2 as a barrier for spin-polarized tunnelling”, Appl. Phys. Lett., Vol. 82, (2003), pp. 3269–3271.[Crossref]
  • [3] C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka and M. Tuominen: “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition”, Appl. Phys. Lett., Vol. 78, (2001), pp. 2357–2359.[Crossref]
  • [4] T.-H. Perng, C.-H. Chien, C.-W. Chen, P. Lehnen and C.-Y. Chang: “High-density MIM capacitors with HfO2 dielectrics”, Thin Solid Films, Vol. 469-470, (2004), pp. 345–349.[Crossref]
  • [5] M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R.J. Luyken, W. Rösner, M. Grieb and L. Risch: “Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications”, Solid State Electron., Vol. 49, (2005), pp. 716–720.[Crossref]
  • [6] S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka and T. Yamanaka: “Large-Area Optical Coatings with Uniform Thickness Grown by Surface Chemical Reactions for High-Power Laser Applications”, Jpn. J. Appl. Phys., Vol. 41, (2002), pp. 160–165.[Crossref]
  • [7] Y. Zhao, T. Wang, D. Zhang, J. Shao and Z. Fan: “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings”, Appl. Surf. Sci., Vol. 245, (2005), pp. 335–339.[Crossref]
  • [8] T. Tawara, H. Gotoh, T. Akasata, N. Kobayashi and T. Saitoh: “Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors”, Appl. Phys. Lett., Vol. 83, (2003), pp. 830–832.[Crossref]
  • [9] H. Tang, K. Prasad, R. Sanjinés and F. Lévy: “TiO2 anatase thin films as gas sensors”, Sensor. Actuat. B, Vol. 26, (1995), pp. 71–75.[Crossref]
  • [10] L.E. Depero, M. Ferroni, V. Guidi, G. Marca, G. Martinelli, P. Nelli, L. Sangaletti and G. Sberveglieri: “Preparation and micro-structural characterization of nano-sized thin film of TiO2-WO3 as a novel material with high sensitivity towards NO2”, Sensor. Actuat. B, Vol. 36, (1996), pp. 381–383.[Crossref]
  • [11] R.S. Niranjan, S.D. Sathaye and I.S. Mulla: “Bilayered tin oxide:zirconia thin film as a humidity sensor”, Sensor. Actuat. B, Vol. 81, (2001), pp. 64–67.[Crossref]
  • [12] P.-K. Shin: “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD”, Appl. Surf. Sci., Vol. 214, (2003), pp. 214–221.[Crossref]
  • [13] V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara and J. Keinonen: “Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water”, Chem. Vap. Deposition, Vol. 10, (2004), pp. 143–148.[Crossref]
  • [14] L. Zhao, Y. Yu, L. Song, X. Hu and A. Larbot: “Synthesis and characterization of nanostructured titania film for photocatalysis”, Appl. Surf. Sci., Vol. 239, (2005), pp. 285–291.[Crossref]
  • [15] C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi and M. Gartner: “TiO2(Fe3+) nanostructured thin films with antibacterial properties”, Thin Solid Films, Vol. 433, (2003), pp. 186–190.[Crossref]
  • [16] I. Losito, A. Amorisco, F. Palmisano and P.G. Zambonin: “X-ray photoelectron spectroscopy characterization of composite TiO2-poly(vinylidenefluoride) films synthesized for applications in pesticide photocatalytic degradation”, Appl. Surf. Sci., Vol. 240, (2005), pp. 180–188.[Crossref]
  • [17] S. Ichikawa and R. Doi: “Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics”, Thin Solid Films, Vol. 292, (1997), pp. 130–134.[Crossref]
  • [18] B. O'Regan and M. Grätzel: “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, (1991), pp. 737–739.[Crossref]
  • [19] E.-L. Lakomaa, S. Haukka and T. Suntola: “Atomic layer growth of TiO2 on silica”, Appl. Surf. Sci., Vol. 60/61, (1992), pp. 742–748.[Crossref]
  • [20] M. Ritala, M. Leskelä, E. Nykänen, P. Soininen and L. Niinistö: “Growth of titanium dioxide thin films by atomic layer epitaxy”, Thin Solid Films, Vol. 225, (1993), pp. 288–295.[Crossref]
  • [21] J. Aarik, A. Aidla, T. Uustare and V. Sammelselg: “Morphology and structure of TiO2 thin films grown by atomic layer deposition”, J. Cryst. Growth, Vol. 148, (1995), pp. 268–275.[Crossref]
  • [22] M.A. Cameron, I.P. Gartland, J.A. Smith, S.F. Diaz and S.M. George: “Atomic Layer Deposition of SiO2 and TiO2 in Alumina Tubular Membranes: Pore Reduction and Effect of Surface Species on Gas Transport”, Langmuir, Vol. 16, (2000), pp. 7435–7444.[Crossref]
  • [23] A. Niilisk, A. Rosental, T. Uustare, A. Kasikov and A. Tarre: “Chloride atomic-layer chemical vapor deposition of TiO2 with a chloride pretreatment of substrates”, J. Phys. IV, Vol. 11, (2001), pp. Pr11-103-108.
  • [24] J. Aarik, A. Aidla, H. Mändar and T. Uustare: “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism”, Appl. Surf. Sci., Vol. 172, (2001), pp. 148–158.[Crossref]
  • [25] J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky and A. Hårsta: “Atomic layer growth of epitaxial TiO2 thin films from TiCl4 and H2O on α-Al2O3 substrates”, J. Cryst. Growth, Vol. 242, (2002), pp. 189–198.[Crossref]
  • [26] J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sammelselg, M. Ritala and M. Leskelä: “Atomic layer deposition of TiO2 thin films from TiI4 and H2O”, Appl. Surf. Sci., Vol. 193, (2002), pp. 277–286.[Crossref]
  • [27] M. Schuisky, K. Kukli, J. Aarik, J. Lu and A. Hårsta: “Epitaxial growth of TiO2 films in a hydroxyl-free atomic layer deposition process”, J. Cryst. Growth, Vol. 235, (2002), pp. 293–299.[Crossref]
  • [28] L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger and F. Lévi: “High mobility n-type charge carriers in large single crystals of anatase (TiO2)”, J. Appl. Phys., Vol. 75, (1994), pp. 633–635.[Crossref]
  • [29] M. Kingler and W. Weppner: “In-situ formation of p-n junctions in semiconducting TiO2”, Appl. Phys. A, Vol. 59, (1994), pp. 239–243.[Crossref]
  • [30] G. Wang, H. Chen, H. Zhang, Y. Shen, C. Yuan, Z. Lu, G. Wang and W. Yang: “Current-voltage characteristics of TiO2/PPy complex films”, Phys. Lett. A, Vol. 237, (1998), pp. 165–168.[Crossref]
  • [31] G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers and J.M. Seakins: “The Raman spectrum of brookite, TiO2 (Pbca, Z = 8)”, J. Raman Spectrosc., Vol. 26, (1995), pp. 57–62.[Crossref]
  • [32] M.P. Moret, R. Zallen, D.P. Vijay and S.B. Desu: “Brookite-rich titania films made by pulsed laser deposition”, Thin Solid Films, Vol. 366, (2000), pp. 8–10.[Crossref]
  • [33] K. Lagarec and S. Desgreniers: “Raman study of single crystal anatase TiO2 up to 70 GPa”, Solid State Commun., Vol. 94, (1995), pp. 519–524.[Crossref]
  • [34] V. Sammelselg, A. Rosental, A. Tarre, L. Niinistö, K. Heiskanen, K. Ilmonen, L.-S. Johansson and T. Uustare: “TiO2 thin films by atomic layer deposition: a case of uneven growth at low temperature”, Appl. Surf. Sci., Vol. 134, (1998), pp. 78–86.[Crossref]
  • [35] J. Aarik, A. Aidla, H. Mändar and V. Sammelselg: “Anomalous effect of temperature on atomic layer deposition of titanium dioxide”, J. Cryst. Growth, Vol. 220, (2000), pp. 531–537.[Crossref]
  • [36] T. Jantson, T. Avarmaa, H. Mändar, T. Uustare and R. Jaaniso: “Nanocrystalline Cr2O3-TiO2 thin films by pulsed laser deposition”, Sensor. Actuat. B, Vol. 109, (2005), pp. 24–31.[Crossref]
  • [37] V. Sammelselg, E. Rauhala, K. Arstila, A. Zakharov, J. Aarik, A. Kikas, J. Karlis, A. Tarre, A. Seppälä, J. Asari and I. Martinson: “Study of thin oxide films by electron, ion and synchrotron radiation beams”, Mikrochim. Acta, Vol. 139, (2002), pp. 165–169.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.