Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  treadmill
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Treadmill tests for maximal oxygen uptake (O2max) have traditionally used set speed and incline increments regardless of participants training or exercise background. The aim of this study was to determine the validity of a novel athlete-led protocol for determining maximal aerobic fitness in adults. Twenty-nine participants (21 male, 8 female, age 29.8 ± 9.5 y, BMI 24.4 ± 3.1, mean ± SD) from a variety of exercise backgrounds were asked to complete two maximal treadmill running tests (using the standard Bruce or a novel athlete-led protocol [ALP]) to volitional failure in a counter-balanced randomised cross-over trial one week apart. We found no substantial difference in maximal oxygen uptake (47.0 ± 9.1 and 46.8 ± 10.7 ml.kg-1.min-1, mean ± SD for the ALP and Bruce protocols respectively), evidenced by the Spearman correlation coefficient of 0.93 (90% confidence limits, 0.88-0.96). However, compared to the Bruce protocol, participants completing the ALP protocol attained a substantially higher maximal heart rate (ALP = 182.8 ± 10.5, Bruce = 179.7 ± 8.7 beats.min-1). Additionally, using the Bruce protocol took a longer period of time (23.2 ± 17.0 s) compared to the ALP protocol. It seems that using either treadmill protocol will give you similar maximal oxygen uptake results. We suggest the ALP protocol which is simpler, quicker and probably better at achieving maximal heart rates is a useful alternative to the traditional Bruce protocol.
EN
It is well established nowadays the benefits that physical activity can have on the health of individuals. Walking is considered a fundamental method of movement and using a backpack is a common and economical manner of carrying load weight. Nevertheless, the shock wave produced by the impact forces when carrying a backpack can have detrimental effects on health status. Therefore, the aim of this study was to investigate differences in the accelerations placed on males and females whilst carrying different loads when walking. Twenty nine sports science students (16 males and 13 females) participated in the study under 3 different conditions: no weight, 10% and 20% body weight (BW) added in a backpack. Accelerometers were attached to the right shank and the centre of the forehead. Results showed that males have lower accelerations than females both in the head (2.62 ± 0.43G compared to 2.83 + 0.47G) and shank (1.37 ± 0.14G compared to 1.52 ± 0.15G; p<0.01). Accelerations for males and females were consistent throughout each backpack condition (p>0.05). The body acts as a natural shock absorber, reducing the amount of force that transmits through the body between the foot (impact point) and head. Anthropometric and body mass distribution differences between males and females may result in women receiving greater impact acceleration compared to men when the same load is carried.
EN
Purpose. A description of gait analysis during overground locmotion has been the subject of various studies, in relation to describing both the kinetic and spatial-temporal characteristics of walking. Measuring the gait of amputees using treadmills is a useful test to quantify locomotive ability, and a tool that helps to control gait parameters during rehabilitation. The aim of this study is to describe the kinetic and spatial-temporal characteristics of gait of rehabilitated amputees, measured with an instrumented treadmill. Methods. Twenty-four participants aged between 20 and 40 years were chosen, who had all suffered unilateral traumatic amputation either above or below the knee, and were classified as well-rehabilitated. Following a paperbased assessment form, the participants were subjected to gait analysis on an instrumented treadmill fitted with two force platforms. Results. The first peak vertical force of intact and amputated limbs presented higher values and was significantly (p 0.05) larger than the second peak vertical force for the amputated limb, indicating less propulsion during walking. A significant difference was observed in the load rate in intact and amputated limbs, indicating more overload in the intact limb. The spatial-temporal variables, cadence, step and stride length were significantly greater (p 0.05) in the below-knee than in the above-knee amputees. Conclusions. The kinetic and spatial-temporal characteristics of gait, measured with an instrumented treadmill, which were observed in all lower limb amputees involved in this study, were similar to the ones commonly reported in numerous studies on overground walking. Thus, treadmill gait training and control of the progress of rehabilitation with amputees is recommended.
EN
An already existing large volume of work on kinematics documents a reduction of step length during unusual gaits, such as backward walking. This is mainly explained in terms of modifications of some biomechanical properties. In the present study, we propose that the proprioceptive information from the knee may be involved in this change of motor strategy. Specifically, we show that a non-automated condition such as backward walking can elicit different motor strategies in subjects with reduced proprioceptive feedback after anterior cruciate ligament lesion (ACL). For this purpose, the kinematic parameters during forward and backward walking in subjects with ACL deficit were compared to two control groups: a group with intact ACL and a group with surgically reconstructed ACL. The knee proprioception was tested measuring the threshold for detection of passive knee motion. Subjects were asked to walk on a level treadmill at five different velocities (1-5km/h) in forward and backward direction, thereby calculating the cadence and step length. Results showed that forward walking parameters were largely unaffected in subjects with ACL damage. However, they failed to reduce step length during backward walking, a correction that was normally observed in all control subjects and in subjects with normal proprioceptive feedback after ACL reconstruction. The main result of the present study is that knee proprioception is an important signal used by the brain to reduce step length during the backward gait. This can have a significant impact on clinical evaluation and rehabilitation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.