Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  salinity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Salinization and sodification of agricultural lands in arid and semi-arid regions of the world are two limiting factors in the crop production. This study was conducted to evaluate the effect of readily available agricultural residues on changing some chemical properties of saline-sodic soils. Wheat, potato, sunflower, and canola residues were separately added into three saline-sodic soils at a rate of 2% by weight and thoroughly mixed with soils. Control and treated soils were incubated for 168 days at a constant moisture and temperature. The pH, electrical conductivity (EC), soluble cations, available nitrate (NO3-) and phosphorous (P), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP) were measured during the incubation. The EC increased in the response to the incorporation of plant residues, whereas the pH was reduced. The application of organic components in soils increased CEC and decreased ESP. The results showed that the maximum reduction in ESP was observed in the potato treatment because of the highest Ca2+ concentration. The average reduction in ESP of treated soil samples at the end of incubation followed this order: 16.1% (potato residue-treated soil) >12.7% (canola residue-treated soil) >11.1% (wheat residue-treated soil) >9.6% (sunflwer residue-treated soil). The potato residue was the most effective amendment in changing the chemical properties of saline-sodic soils in comparison with other organic residues. The results indicated that the application of organic residues had a positive impact on reducing the soil sodicity and improving the soil fertility depending on their chemical composition.
EN
This study examined the effect of salt concentration (NaCl/Na2SO4) on the sorption efficiency of Reactive Black 5 (RB5) dye on chitosan hydrogel granules (CHs). The tested salt concentration was in the range of 0.0 to 0.5 mol/L. The scope of the research included the effect of salinity on RB5 sorption at different pH values (4–11), equilibrium time, and maximum sorption capacity (Langmuir 2 model). At low pH (pH 4, pHpHPZC), an opposite trend was observed (the sorption efficiency of RB5 on CHs increased with increasing salinity). The concentration of salt in the solution did not have a major impact on the equilibrium time of sorption, which depended mainly on the initial pH of the solution (and ranged from 36 to 60 h). The relatively long sorption time resulted from the hydrogel structure of the sorbent used, which slowed the dye absorption ability. The maximum sorption capacity of CHs in relation to RB5 at the optimum pH (pH 4) in the solution without the addition of salt determined after 60 h of sorption was 1.386 mmol RB5/g (1373.5 mg RB5/g). Under conditions of high salinity (0.5 mol Na2SO4/L), at pH 4, the capacity was 17.2% lower (1.148 mmol RB5/g to 1139.7 mg RB5/g), and at pH 11, it was 6.3% higher (1.474 mmol RB5/g to 1460.7 mg RB5/g).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.