Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2025 | 60 | 138-155

Article title

Polycystic Ovarian Syndrome (PCOS) Management In Indian Women: Through Native Diet and Gut Microbiota Regulation

Content

Title variants

Languages of publication

EN

Abstracts

EN
Polycystic ovarian syndrome (PCOS) has become a common metabolic syndrome among women globally. In recent times, Indian women are more prone to PCOS following unhealthy eating patterns that involve overconsumption of commercially available Western diets (WD), including sugary food and processed food (PF). Ingestion of WDs and PFs causes dysbiosis (DB) in the gut. Dysbiosis (DB) – an imbalance between beneficial and pathogenic gut bacteria is suspected to undermine the health of the intestine by triggering obesity, insulin resistance (IR), disrupted ovulation (DO), and hyperandrogenism (HA). DO is termed anovulation. Pregnant women who consume commercial foods are prone to intergenerational implications for PCOS risk. Following dietary patterns focusing on GM regulation, such as probiotics and prebiotics, are emerging. Consumption of such a diet can regulate GM and revert the associated metabolic disorders (MD), such as IR, inflammation, and HA, which are the leading factors of PCOS. Emphasizing the choice of traditional, home-cooked food can address nutritional deficiencies and support gut health. The systematic review renders the effect of dietary choices on GM in PCOS regulation.

Year

Volume

60

Pages

138-155

Physical description

Contributors

author
  • Department of Plant Biology and Biotechnology, Loyola College, Chennai 600034, Tamil Nadu, India
  • Department of Plant Biology and Biotechnology, Loyola College, Chennai 600034, Tamil Nadu, India

References

  • [1] Calcaterra, V., Rossi, V., Massini, G., Casini, F., Zuccotti, G., & Fabiano, V. (2023). Probiotics and polycystic ovary syndrome: a perspective for management in adolescents with obesity. Nutrients, 15(14), 3144.
  • [2] Bharali, M. D., Rajendran, R., Goswami, J., Singal, K., & Rajendran, V. (2022). Prevalence of polycystic ovarian syndrome in India: a systematic review and meta-analysis. Cureus, 14(12).
  • [3] Zhao, H., Zhang, J., Cheng, X., Nie, X., & He, B. (2023). Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. Journal of Ovarian Research, 16(1), 9.
  • [4] Alhermi, A., Perks, H., Nigi, V., Altahoo, N., Atkin, S. L., & Butler, A. E. (2025). The Role of the Liver in the Pathophysiology of PCOS: A Literature Review. Biomolecules, 15(1), 51.
  • [5] Begum, R. F., Singh, A., & Mohan, S. (2023). Impact of junk food on obesity and polycystic ovarian syndrome: Mechanisms and management strategies. Obesity Medicine, 40, 100495.
  • [6] Afzaal, M., Saeed, F., Shah, Y. A., Hussain, M., Rabail, R., Socol, C. T., ... & Aadil, R. M. (2022). Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in Microbiology, 13, 999001.
  • [7] Khalil, M., Di Ciaula, A., Mahdi, L., Jaber, N., Di Palo, D. M., Graziani, A., ... & Portincasa, P. (2024). Unraveling the role of the human gut Microbiome in Health and diseases. Microorganisms, 12(11), 2333.
  • [8] Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., & Gasbarrini, A. (2017). Proteobacteria: a common factor in human diseases. BioMed Research International, 2017, 1, 9351507. doi: 10.1155/2017/9351507
  • [9] Vera-Santander, V. E., Hernández-Figueroa, R. H., Jiménez-Munguía, M. T., Mani-López, E., & López-Malo, A. (2023). Health benefits of consuming foods with bacterial probiotics, postbiotics, and their metabolites: a review. Molecules, 28(3), 1230.
  • [10] Zeng, Y., Yin, Y., & Zhou, X. (2024). Insights into Microbiota–Host Crosstalk in the Intestinal Diseases Mediated by Extracellular Vesicles and Their Encapsulated MicroRNAs. International Journal of Molecular Sciences, 25(23), 13001.
  • [11] Zhou, A., Yuan, Y., Yang, M., Huang, Y., Li, X., Li, S., ... & Tang, B. (2022). Crosstalk between the gut microbiota and epithelial cells under physiological and infectious conditions. Frontiers in Cellular and Infection Microbiology, 12, 832672.
  • [12] Kelly, C. J., Zheng, L., Campbell, E. L., Saeedi, B., Scholz, C. C., Bayless, A. J., ... & Colgan, S. P. (2015). Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe, 17(5), 662-671.
  • [13] Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., ... & Xie, P. (2019). The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2), eaau8317
  • [14] Russell, A.L., McAdams, Z.L., Donovan, E. et al. The contribution of maternal oral, vaginal, and gut microbiota to the developing offspring gut. Sci Rep 13, 13660 (2023). https://doi.org/10.1038/s41598-023-40703-7
  • [15] Malard, F., Dore, J., Gaugler, B., & Mohty, M. (2021). Introduction to host microbiome symbiosis in health and disease. Mucosal Immunology, 14(3), 547-554.
  • [16] Redondo-Useros, N., Nova, E., González-Zancada, N., Díaz, L. E., Gómez-Martínez, S., & Marcos, A. (2020). Microbiota and lifestyle: a special focus on diet. Nutrients, 12(6), 1776.
  • [17] Liu, R., Zhang, C., Shi, Y., Zhang, F., Li, L., Wang, X., Ling, Y., Fu, H., Dong, W., Shen, J., Reeves, A., Greenberg, A. S., Zhao, L., Peng, Y., & Ding, X. (2017). Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Frontiers in Microbiology, 8, 234522. https://doi.org/10.3389/fmicb.2017.00324
  • [18] Wang, K., Lai, W., Min, T., Wei, J., Bai, Y., Cao, H., ... & Su, Z. (2024). The Effect of Enteric-Derived Lipopolysaccharides on Obesity. International Journal of Molecular Sciences, 25(8), 4305.
  • [19] Dempsey, E., & Corr, S. C. (2022). Lactobacillus spp. for gastrointestinal health: current and future perspectives. Frontiers in Immunology, 13, 840245.
  • [20] Guillemard E., Poirel M., Schafer F., Quinquis L., Rossoni C., Keicher C., et al.. (2021). A randomised, controlled trial: Effect of a multi-strain fermented milk on the gut microbiota recovery after helicobacter pylori therapy. Nutrients 13, 3171. doi: 10.3390/nu13093171
  • [21] He FF, Li YM. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020 Jun 17; 13(1): 73. doi: 10.1186/s13048-020-00670-3
  • [22] Torres, P. J., Siakowska, M., Banaszewska, B., Pawelczyk, L., Duleba, A. J., Kelley, S. T., & Thackray, V. G. (2018). Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. The Journal of Clinical Endocrinology & Metabolism, 103(4), 1502-1511.
  • [23] Yang, Y. L., Zhou, W. W., Wu, S., Tang, W. L., Wang, Z. W., Zhou, Z. Y., ... & Zhou, H. W. (2021). Intestinal flora is a key factor in insulin resistance and contributes to the development of polycystic ovary syndrome. Endocrinology, 162(10), bqab118.
  • [24] Leung, W. T., Tang, Z., Feng, Y., Guan, H., Huang, Z., & Zhang, W. (2022). Lower Fiber consumption in women with polycystic ovary syndrome: a meta-analysis of observational studies. Nutrients, 14(24), 5285.
  • [25] Wang, X., Xu, T., Liu, R., Wu, G., Gu, L., Zhang, Y., ... & Ding, X. (2022). High-fiber diet or combined with acarbose alleviates heterogeneous phenotypes of polycystic ovary syndrome by regulating gut microbiota. Frontiers in Endocrinology, 12, 806331.
  • [26] Rasaei, N., Fatemi, S. F., Gholami, F., Samadi, M., Mohammadian, M. K., Daneshzad, E., & Mirzaei, K. (2025). Interaction of genetics risk score and fatty acids quality indices on healthy and unhealthy obesity phenotype. BMC Medical Genomics, 18(1), 16
  • [27] Clemente-Suárez, V. J., Beltrán-Velasco, A. I., Redondo-Flórez, L., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2023). Global impacts of western diet and its effects on metabolism and health: A narrative review. Nutrients, 15(12), 2749.
  • [28] Bharali, M. D., Rajendran, R., Goswami, J., Singal, K., & Rajendran, V. (2022). Prevalence of polycystic ovarian syndrome in India: a systematic review and meta-analysis. Cureus, 14(12).
  • [29] Zhou, P., Feng, P., Liao, B. et al. Role of polyphenols in remodeling the host gut microbiota in polycystic ovary syndrome. J Ovarian Res 17, 69 (2024). https://doi.org/10.1186/s13048-024-01354-y
  • [30] Netto Candido, T. L., Bressan, J., & Alfenas, R. C. G. (2018). Dysbiosis and metabolic endotoxemia induced by high-fat diet. Disbiosis y endotoxemia metabólica inducidas por la dieta rica en grasa. Nutricion Hospitalaria, 35(6), 1432–1440. https://doi.org/10.20960/nh.1792
  • [31] Louwers, Y. V., & Laven, J. S. (2020). The polycystic ovary syndrome (PCOS). Female reproductive dysfunction, 1-23.
  • [32] Dong, Y., Yang, S., Zhang, S., Zhao, Y., Li, X., Han, M., ... & Zou, K. (2025). Modulatory impact of Bifidobacterium longum subsp. longum BL21 on the gut–brain–ovary axis in polycystic ovary syndrome: insights into metabolic regulation, inflammation mitigation, and neuroprotection. mSphere, e00887-24.
  • [33] Cowan, S., Lim, S., Alycia, C., Pirotta, S., Thomson, R., Gibson-Helm, M., ... & Moran, L. (2023). Lifestyle management in polycystic ovary syndrome–beyond diet and physical activity. BMC Endocrine Disorders, 23(1), 14.
  • [34] Redondo-Useros, N., Nova, E., González-Zancada, N., Díaz, L. E., Gómez-Martínez, S., & Marcos, A. (2020). Microbiota and lifestyle: a special focus on diet. Nutrients, 12(6), 1776.
  • [35] Brichacek, A. L., Florkowski, M., Abiona, E., & Frank, K. M. (2024). Ultra-processed foods: a narrative review of the impact on the human gut microbiome and variations in classification methods. Nutrients, 16(11), 1738.
  • [36] Miclotte, L., & Van de Wiele, T. (2020). Food processing, gut microbiota and the globesity problem. Critical Reviews in Food Science and Nutrition, 60(11), 1769-1782.
  • [37] Ferreira, R. D. S., Mendonça, L. A. B. M., Ribeiro, C. F. A., Calças, N. C., Guimarães, R. D. C. A., Nascimento, V. A. D., ... & Franco, O. L. (2022). Relationship between intestinal microbiota, diet and biological systems: an integrated view. Critical Reviews in Food Science and Nutrition, 62(5), 1166-1186.
  • [38] Kumar, S., & Singh, C. (2022). Productivity growth in India's bakery manufacturing industry. Journal of Agribusiness in Developing and Emerging Economies, 12(1), 94-103.
  • [39] Dhir and Singla. 2020. Consumption Pattern and Health Implications of Convenience Foods: A Practical Review. Current Journal of Applied Science and Technology 38 (6): 1-9. DOI: 10.9734/CJAST/2019/v38i630455
  • [40] Dhir, Bhavya, Neerja Singla, and Rohini Jain. 2020. Relationship Between Consumption of Convenience Foods and Health Status of the Working Women. Current Journal of Applied Science and Technology 39 (3): 87-94. https://doi.org/10.9734/cjast/2020/v39i330518
  • [41] Szynal, K., Polaniak, R., Górski, M., Grajek, M., Ciechowska, K., & Grochowska-Niedworok, E. (2021). Processed Food And Food Additives In The Context Of Dysbiosis And Its Health Consequences. Advancements of Microbiology, 60(3), 223-230.
  • [42] Brichacek, A. L., Florkowski, M., Abiona, E., & Frank, K. M. (2024). Ultra-processed foods: a narrative review of the impact on the human gut microbiome and variations in classification methods. Nutrients, 16(11), 1738.
  • [43] Jawhara, S. (2023). Healthy diet and lifestyle improve the gut microbiota and help combat fungal infection. Microorganisms, 11(6), 1556
  • [44] Macuglia Spanemberg, F. E., Sellitto, M. A., Mailan Porto, L., Cruz dos Santos, A., & Canez Lemos Souza, Á. (2022). Shelf life estimation of glassy confections using moisture sorption isotherms. Journal of Food Process Engineering, 45(5), e14024.
  • [45] Sun, S., Araki, Y., Hanzawa, F., Umeki, M., Kojima, T., Nishimura, N., ... & Oda, H. (2021). High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. The Journal of Nutritional Biochemistry, 93, 108621.
  • [46] Targher, G., Rossini, M., & Lonardo, A. (2016). Evidence that non-alcoholic fatty liver disease and polycystic ovary syndrome are associated by necessity rather than chance: a novel hepato-ovarian axis? Endocrine, 51, 211-221.
  • [47] Thaiss, C. A., Levy, M., Grosheva, I., Zheng, D., Soffer, E., Blacher, E., ... & Elinav, E. (2018). Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science, 359(6382), 1376-1383.
  • [48] Fajstova, A., Galanova, N., Coufal, S., Malkova, J., Kostovcik, M., Cermakova, M., ... & Kostovcikova, K. (2020). Diet rich in simple sugars promotes pro-inflammatory response via gut microbiota alteration and TLR4 signaling. Cells, 9(12), 2701.
  • [49] Khan, T. A., Lee, J. J., Ayoub-Charette, S., Noronha, J. C., McGlynn, N., Chiavaroli, L., & Sievenpiper, J. L. (2023). WHO guideline on the use of non-sugar sweeteners: a need for reconsideration. European Journal of Clinical Nutrition, 77(11), 1009-1013.
  • [50] Nadolsky, K. Z. (2021). COUNTERPOINT: artificial sweeteners for obesity—better than sugary alternatives; potentially a solution. Endocrine Practice, 27(10), 1056-1061.
  • [51] Wilk, K., Korytek, W., Pelczyńska, M., Moszak, M., & Bogdański, P. (2022). The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients, 14(6), 1261. https://doi.org/10.3390/nu14061261
  • [52] Rogers, P. J. (2024). Non-nutritive sweeteners and body weight management: another brick in the wall of evidence. International Journal of Obesity, 48(1), 1-2.
  • [53] Laster, J., Bonnes, S. L., & Rocha, J. (2019). Increased use of emulsifiers in processed foods and the links to obesity. Current gastroenterology reports, 21, 1-6
  • [54] Zhang, Y., Chen, L., Gao, J., Cheng, Y., Luo, F., Bai, X., & Ding, H. (2023). Nutritive/non-nutritive sweeteners and high fat diet contribute to dysregulation of sweet taste receptors and metabolic derangements in oral, intestinal and central nervous tissues. European Journal of Nutrition, 62(8), 3149-3159.
  • [55] Debras, C., Chazelas, E., Srour, B., Druesne-Pecollo, N., Esseddik, Y., de Edelenyi, F. S., ... & Touvier, M. (2022). Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLoS Medicine, 19(3), e1003950.
  • [56] Conz, A., Salmona, M., & Diomede, L. (2023). Effect of non-nutritive sweeteners on the gut microbiota. Nutrients, 15(8), 1869.
  • [57] Binns, N. M. (2003). Sucralose–all sweetness and light. Nutrition Bulletin, 28(1).
  • [58] Del Pozo, S., Gómez-Martínez, S., Díaz, L. E., Nova, E., Urrialde, R., & Marcos, A. (2022). Potential effects of sucralose and saccharin on gut microbiota: a review. Nutrients, 14(8), 1682.
  • [59] Wu, W., Sui, W., Chen, S., Guo, Z., Jing, X., Wang, X., ... & Cao, Y. (2025). Sweetener aspartame aggravates atherosclerosis through insulin-triggered inflammation. Cell Metabolism. https://doi.org/10.1016/j.cmet.2025.01.006
  • [60] Jin, Q., Xu, G., Ying, Y., Liu, L., Zheng, H., Xu, S., ... & Chen, Y. (2025). Effects of non-pharmacological interventions on biochemical hyperandrogenism in women with polycystic ovary syndrome: a systematic review and network meta-analysis. Journal of Ovarian Research, 18(1), 8.
  • [61] Turner, A., Veysey, M., Keely, S., Scarlett, C. J., Lucock, M., & Beckett, E. L. (2020). Intense sweeteners, taste receptors and the gut microbiome: a metabolic health perspective. International Journal of Environmental Research and Public Health, 17(11), 4094
  • [62] Posta, E., Fekete, I., Gyarmati, E., Stündl, L., Zold, E., & Barta, Z. (2023). The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life, 14(1), 10
  • [63] Moonwiriyakit, A., Pathomthongtaweechai, N., Steinhagen, P. R., Chantawichitwong, P., Satianrapapong, W., & Pongkorpsakol, P. (2023). Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers, 11(2), 2077620.
  • [64] Severino, A., Tohumcu, E., Tamai, L., Dargenio, P., Porcari, S., Rondinella, D., ... & Ianiro, G. (2024). The microbiome-driven impact of western diet in the development of noncommunicable chronic disorders. Best Practice & Research Clinical Gastroenterology, 101923.
  • [65] Daniel, N., Gewirtz, A. T., & Chassaing, B. (2023). Akkermansia muciniphila counteracts the deleterious effects of dietary emulsifiers on microbiota and host metabolism. Gut, 72(5), 906-917.
  • [66] Zhang, X., Wang, Q., Liu, Z., Zhi, L., Jiao, B., Hu, H., ... & Shi, A. (2023). Plant protein-based emulsifiers: Mechanisms, techniques for emulsification enhancement and applications. Food Hydrocolloids, 144, 109008. https://doi.org/10.1016/j.foodhyd.2023.109008
  • [67] Ogulur, I., Yazici, D., Pat, Y., Bingöl, E. N., Babayev, H., Ardicli, S., ... & Akdis, C. A. (2023). Mechanisms of gut epithelial barrier impairment caused by food emulsifiers polysorbate 20 and polysorbate 80. Allergy, 78(9), 2441-2455
  • [68] De Siena, M., Raoul, P., Costantini, L., Scarpellini, E., Cintoni, M., Gasbarrini, A., ... & Mele, M. C. (2022). Food emulsifiers and metabolic syndrome: the role of the gut microbiota. Foods, 11(15), 2205.
  • [69] Naimi, S., Viennois, E., Gewirtz, A. T., & Chassaing, B. (2021). Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome, 9, 1-19.
  • [70] Panyod, S., Wu, W. K., Chang, C. T., Wada, N., Ho, H. C., Lo, Y. L., ... & Sheen, L. Y. (2024). Common dietary emulsifiers promote metabolic disorders and intestinal microbiota dysbiosis in mice. Communications Biology, 7(1), 749
  • [71] Garbiec, E., Cielecka-Piontek, J., Kowalówka, M., Hołubiec, M., & Zalewski, P. (2022). Genistein—opportunities related to an interesting molecule of natural origin. Molecules, 27(3), 815.
  • [72] Xiang, J., Mlambo, R., Dube, P., Machona, O., Shaw, I., Seid, Y., ... & Tan, S. (2023). The obesogenic side of Genistein. Frontiers in Endocrinology, 14, 1308341.
  • [73] Malik, P., Singh, R., Kumar, M., Malik, A., & Mukherjee, T. K. (2023). Understanding the phytoestrogen genistein actions on breast cancer: Insights on estrogen receptor equivalence, pleiotropic essence and emerging paradigms in bioavailability modulation. Current Topics in Medicinal Chemistry, 23(15), 1395-1413
  • [74] Mohammad, S., & Thiemermann, C. (2021). Role of metabolic endotoxemia in systemic inflammation and potential interventions. Frontiers in Immunology, 11, 594150.
  • [75] Dai, Y. J., Liu, W. B., Abasubong, K. P., Zhang, D. D., Li, X. F., Xiao, K., ... & Jiang, G. Z. (2022). The mechanism of lipopolysaccharide escaping the intestinal barrier in Megalobrama amblycephala fed a high-fat diet. Frontiers in Nutrition, 9, 853409.
  • [76] Tomassen, M. M., Govers, C., Vos, A. P., & De Wit, N. J. (2023). Dietary fat induced chylomicron-mediated LPS translocation in a bicameral Caco-2cell model. Lipids in Health and Disease, 22(1), 4.
  • [77] Park, J. E., Park, H. Y., Kim, Y. S., & Park, M. (2024). The Role of Diet, Additives, and Antibiotics in Metabolic Endotoxemia and Chronic Diseases. Metabolites, 14(12), 704.
  • [78] Ruder, B., Atreya, R., & Becker, C. (2019). Tumour necrosis factor alpha in intestinal homeostasis and gut-related diseases. International Journal of Molecular Sciences, 20(8), 1887.
  • [79] Webster, J. D., & Vucic, D. (2020). The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Frontiers in Cell and Developmental Biology, 8, 365.
  • [80] Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight junctions as a key for pathogens invasion in intestinal epithelial cells. International Journal of Molecular Sciences, 22(5), 2506.
  • [81] Alizadeh, A., Akbari, P., Garssen, J., Fink-Gremmels, J., & Braber, S. (2022). Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers, 10(3), 1996830.
  • [82] Ghosh, S. S., Wang, J., Yannie, P. J., & Ghosh, S. (2020). Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society, 4(2), bvz039..
  • [83] Lingaiah, S., Arffman, R. K., Morin-Papunen, L., Tapanainen, J. S., & Piltonen, T. (2021). Markers of gastrointestinal permeability and dysbiosis in premenopausal women with PCOS: a case–control study. BMJ Open, 11(7), e045324.
  • [84] Yang, M., Gu, Y., Li, L., Liu, T., Song, X., Sun, Y., ... & Cao, H. (2021). Bile acid–gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients, 13(9), 3143.
  • [85] Zhu, F., Zheng, S., Zhao, M., Shi, F., Zheng, L., & Wang, H. (2023). The regulatory role of bile acid microbiota in the progression of liver cirrhosis. Frontiers in Pharmacology, 14, 1214685.
  • [86] Sivasankari, R., & Usha, B. (2022). Reshaping the gut microbiota through lifestyle interventions in women with PCOS: a review. Indian Journal of Microbiology, 62(3), 351-363.
  • [87] Angoorani, P., Ejtahed, H. S., Ettehad Marvasti, F., Taghavi, M., Mohammadpour Ahranjani, B., Hasani-Ranjbar, S., & Larijani, B. (2023). The effects of probiotics, prebiotics, and synbiotics on polycystic ovarian syndrome: an overview of systematic reviews. Frontiers in Medicine, 10, 1141355.
  • [88] Li, Y., Tan, Y., Xia, G., & Shuai, J. (2023). Effects of probiotics, prebiotics, and synbiotics on polycystic ovary syndrome: a systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 63(4), 522-538.
  • [89] Talebi, S., Zeraattalab-Motlagh, S., Jalilpiran, Y., Payandeh, N., Ansari, S., Mohammadi, H., ... & Shab-Bidar, S. (2023). The effects of pro-, pre-, and synbiotics supplementation on polycystic ovary syndrome: an umbrella review of meta-analyses of randomized controlled trials. Frontiers in Nutrition, 10, 1178842.
  • [90] Yurtdaş, G., & Akdevelioğlu, Y. (2020). A new approach to polycystic ovary syndrome: the gut microbiota. Journal of the American College of Nutrition, 39(4), 371-382.
  • [91] Parichat, P., & Pongsak, R. (2023). Probiotics: Sources, selection and health benefits. Research Journal of Biotechnology 18, 5.
  • [92] Yao, M., Qv, L., Lu, Y., Wang, B., Berglund, B., & Li, L. (2021). An update on the efficacy and functionality of probiotics for the treatment of non-alcoholic fatty liver disease. Engineering, 7(5), 679-686.
  • [93] Bubnov, R. V., Babenko, L. P., Lazarenko, L. M., Mokrozub, V. V., & Spivak, M. Y. (2018). Specific properties of probiotic strains: relevance and benefits for the host. EPMA Journal, 9, 205-223.
  • [94] Karamali, M., Eghbalpour, S., Rajabi, S., Jamilian, M., Bahmani, F., TajabadiEbrahimi, M., ... & Asemi, Z. (2018). Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, doubleblind, placebo-controlled trial. Archives of Iranian Medicine, 21(1), 1-7.
  • [95] Farajipour, H., Matin, H. R., Asemi, Z., Sadr, S., Tajabadi-Ebrahimi, M., Sharifi, N., ... & Mirzaei, H. (2024). The effects of probiotics supplements on metabolic indices and clinical signs in patients with diabetic retinopathy, a randomized double blind clinical trial. Journal of Diabetes & Metabolic Disorders, 23(1), 1133-1140.
  • [96] Martinez Guevara, D., Vidal Cañas, S., Palacios, I., Gómez, A., Estrada, M., Gallego, J., & Liscano, Y. (2024). Effectiveness of Probiotics, Prebiotics, and Synbiotics in Managing Insulin Resistance and Hormonal Imbalance in Women with Polycystic Ovary Syndrome (PCOS): A Systematic Review of Randomized Clinical Trials. Nutrients, 16(22), 3916.
  • [97] Schiattarella, A., Riemma, G., Verde, M. L., Franci, G., Chianese, A., Fasulo, D., ... & De Franciscis, P. (2021). Polycystic ovary syndrome and probiotics: a natural approach to an inflammatory disease. Current Women's Health Reviews, 17(1), 14-20.
  • [98] Basavaiah, R., & Gurudutt, P. S. (2021). Prebiotic Carbohydrates for Therapeutics. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 21(2), 230-245.
  • [99] Rahim, M. A., Saeed, F., Khalid, W., Hussain, M., & Anjum, F. M. (2021). Functional and nutraceutical properties of fructo-oligosaccharides derivatives: a review. International Journal of Food Properties, 24(1), 1588-1602.
  • [100] Pedrosa, L. D. F., de Vos, P., & Fabi, J. P. (2024). From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients, 16(24), 4286.
  • [101] Zhang, S., Zhao, J., Xie, F., He, H., Johnston, L. J., Dai, X., ... & Ma, X. (2021). Dietary fiber‐derived short‐chain fatty acids: A potential therapeutic target to alleviate obesity‐related nonalcoholic fatty liver disease. Obesity Reviews, 22(11), e13316.
  • [102] Zeng, Y., Wu, Y., Zhang, Q., & Xiao, X. (2024). Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. Mbio, 15(1), e02032-23.
  • [103] Bu, T., Sun, Z., Pan, Y., Deng, X., & Yuan, G. (2024). Glucagon-like peptide-1: new regulator in lipid metabolism. Diabetes & Metabolism Journal, 48(3), 354-372.
  • [104] Kaushal, D., & Kalsi, G. (2024). Prebiotics and vitamins enhance gut barrier in a randomized double-blind placebo-controlled trial. Nutrition & Food Science. https://doi.org/10.1108/NFS-08-2024-0272
  • [105] Xie, A., Dong, Y., Liu, Z., Li, Z., Shao, J., Li, M., & Yue, X. (2023). A review of plant-based drinks addressing nutrients, flavor, and processing technologies. Foods, 12(21), 3952.
  • [106] Joardar, S., Duarah, P., & Purkait, M. K. (2023). Recent advances in myo-inositol recovery and purification from agricultural sources as potential dietary supplements: A review. Sustainable Chemistry and Pharmacy, 36, 101331.
  • [107] Dwivedi, S., Singh, V., Mahra, K., Sharma, K., Baunthiyal, M., & Shin, J. H. (2024). Functional foods in the northwestern Himalayan Region of India and their significance: a healthy dietary tradition of Uttarakhand and Himachal Pradesh. Journal of Ethnic Foods, 11(1), 20.
  • [108] Kalia, P., & Singh, S. (2023). Nutritional enhancement of vegetable crops (with major emphasis on Broccoli: a new cole crop in India). In Vegetables for Nutrition and Entrepreneurship (pp. 1-29). Singapore: Springer Nature Singapore.
  • [109] Strieder, M. M., Arruda, H. S., Pastore, G. M., & Silva, E. K. (2023). Inulin-type dietary fiber stability after combined thermal, mechanical, and chemical stresses related to ultrasound processing of prebiotic apple beverage. Food Hydrocolloids, 139, 108489.
  • [110] Hiel, S., Bindels, L. B., Pachikian, B. D., Kalala, G., Broers, V., Zamariola, G., ... & Delzenne, N. M. (2019). Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. The American Journal of Clinical Nutrition, 109(6), 1683-1695.
  • [111] Li, X., Jiang, B., Gao, T., Nian, Y., Bai, X., Zhong, J., ... & Ma, X. (2024). Effects of inulin on intestinal flora and metabolism-related indicators in obese polycystic ovary syndrome patients. European Journal of Medical Research, 29(1), 443.
  • [112] Caputo, M., Bona, E., Leone, I., Samà, M. T., Nuzzo, A., Ferrero, A., ... & Prodam, F. (2020). Inositols and metabolic disorders: From farm to bedside. Journal of Traditional and Complementary Medicine, 10(3), 252-259
  • [113] Shokrpour, M., Foroozanfard, F., Afshar Ebrahimi, F., Vahedpoor, Z., Aghadavod, E., Ghaderi, A., & Asemi, Z. (2019). Comparison of myo-inositol and metformin on glycemic control, lipid profiles, and gene expression related to insulin and lipid metabolism in women with polycystic ovary syndrome: a randomized controlled clinical trial. Gynecological Endocrinology, 35(5), 406-411.
  • [114] Kamenov, Z., Gateva, A., Dinicola, S., & Unfer, V. (2023). Comparing the efficacy of myo-inositol plus α-lactalbumin vs. Myo-inositol alone on reproductive and metabolic disturbances of polycystic ovary syndrome. Metabolites, 13(6), 717.
  • [115] Montanino Oliva, M., Buonomo, G., Calcagno, M., & Unfer, V. (2018). Effects of myo-inositol plus alpha-lactalbumin in myo-inositol-resistant PCOS women. Journal of Ovarian Research, 11, 1-7

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f628cd4f-f50e-4841-ad61-1a9cdc93cd17
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.