Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 79 - 93

Article title

INFLUENCE OF CHITOSAN MOLECULAR WEIGHT AND DEGREE OF DEACETYLATION ON MEMBRANE PHYSICOCHEMICAL AND SEPARATION PROPERTIES IN ETHANOL DEHYDRATION BY THE VAPOUR PERMEATION PROCESS

Content

Title variants

Languages of publication

EN

Abstracts

EN
Membranes were prepared using three chitosans with different molecular weights and degrees of deacetylation. The influence of chitosan features on membrane physicochemical properties, i.e. degree of swelling, contact angle and tensile strength, as well as membrane separation properties in ethanol dehydration by the vapour permeation process are discussed. The conducted experiments showed that an increase in the chitosan molecular weight led to an increase in the membrane surface contact angle concomitant with a decrease in the material selectivity coefficient. On the other hand, an increase in the chitosan degree of deacetylation caused a reduction in ethanol and improved the water permeate flux. There was greater selectivity in the test process for membranes prepared from chitosan with the lowest molecular weight.

Contributors

  • Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers

References

  • [1] Zielińska K, Kujawski W, Chostenko AG; (2011) Chitosan hydrogel membranes for pervaporative dehydration of alcohols. Sep Purif Technol 83(1), 114-120. DOI: 10.1016/j.seppur.2011.09.023
  • [2] Zargar V, Asghari M, Rajael B; (2014) Synthesis and characterization of novel nanocomposite Chitosan membranes for Ethanol dehydration. Int J Nano Dimens 5(5), 441-446. DOI: 10.7508/ijnd.2014.05.003
  • [3] Mali MG, Gokavi GS. (2018) High performance organic/inorganic hybrid mixed matrix blend membranes of chitosan and hydroxyethyl cellulose for pervaporation separation of ethanol-water mixtures. AIP Conf Proc 1989. DOI: 10.1063/1.5047703
  • [4] Xu D, Hein S, Wang K. (2008) Chitosan membrane in separation applications. Mater Sci Technol 24(9), 1076-1087. DOI: 10.1179/174328408x341762
  • [5] Foster LJR, Ho S, Hook J, Basuki M, Marçal H. (2015) Chitosan as a biomaterial: Influence of degree of deacetylation on its physiochemical, material and biological properties. PLoS One 10(8), 1-22. DOI: 10.1371/journal.pone.0135153
  • [6] Uragami T, Matsuda T, Okuno H, Miyata T. (1994) Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions. J Memb Sci 88(93), 243-251. DOI: 10.1016/0376-7388(94)87010-1
  • [7] Ge J, Cui Y, Yan Y, Jiang W. (2000) The effect of structure on pervaporation of chitosan membrane. J Memb Sci 165(1), 75-81. DOI: 10.1016/S0376-7388(99)00228-8
  • [8] Park SY, Marsh KS, Rhim JW. (2002) Characteristics of different molecular weight chitosan films affected by the type of organic solvents. J Food Sci 67(1), 194-197. DOI: 10.1111/j.1365-2621.2002.tb11382.x
  • [9] Torres MA, Aimoli CG, Beppu MM, Frejlich J. (2005) Chitosan membrane with patterned surface obtained through solution drying. Colloids Surfaces A Physicochem Eng Asp 268(1-3), 175-179. DOI: 10.1016/j.colsurfa.2005.07.009
  • [10] Hirai A, Odani H, Nakajima A. (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy 94, 87-94. DOI: 10.1007/BF00299352
  • [11] Wang W, Bo S, Li S, Qin W. (1991) Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int J Biol Macromol 13(5), 281-285. DOI: 10.1016/0141-8130(91)90027-R
  • [12] Gnus M, Dudek G, Turczyn R. (2018) The influence of filler type on the separation properties of mixed - matrix membranes. Chem Pap 72(5), 1095-1105. DOI: 10.1007/s11696-017-0363-9
  • [13] Qin C, Du Y, Zong L, Zeng F, Liu Y, Zhou B. (2003) Effect of hemicellulase on the molecular weight and structure of chitosan. Polym Degrad Stab 80(3), 435-441. DOI: 10.1016/S0141-3910(03)00027-2
  • [14] Uragami T, Saito T, Miyata T. (2015) Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes. Carbohydr Polym 120, 1-6. DOI: 10.1016/j.carbpol.2014.11.032
  • [15] Bagheri-Khoulenjani S, Taghizadeh SM, Mirzadeh H. (2009) An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr Polym 78(4), 773-778. DOI: 10.1016/j.carbpol.2009.06.020
  • [16] Ren D, Yi H, Wang W, Ma X. (2005) The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res 340(15), 2403-2410. DOI: 10.1016/j.carres.2005.07.022
  • [17] Chen RH, Lin JH, Yang MH. (1994) Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr Polym 24(1), 41-46. DOI: 10.1016/0144-8617(94)90115-5
  • [18] Clasen C, Wilhelms T, Kulicke W. (2006) Formation and Characterization of Chitosan Membranes. Biomacromolecules 7, 3210-3222. DOI: 10.1002/(sici)1097-4628(19980118)67:3<513::aid-pp14>3.3.co;2-5
  • [19] Zhang H, Ni HG, Wang XP, Wang X Bin, Zhang W. (2006) Effect of chemical groups of polystyrene membrane surface on its pervaporation performance. J Memb Sci. 281(1-2), 626-635. DOI: 10.1016/j.memsci.2006.04.034
  • [20] Tretinnikov ON. (1997) Selective accumulation of functional groups at the film surfaces of stereoregular poly(methyl methacrylate)s. Langmuir 13(11), 2988-2992. DOI: 10.1021/la9700275
  • [21] Schulz PC, Rodríguez MS, Del Blanco LF, Pistonesi M, Agulló E. (1998) Emulsification properties of chitosan. Colloid Polym Sci 276(12), 1159-1165. DOI: 10.1007/s003960050359
  • [22] Schatz C, Viton C, Delair T, Pichot C, Domard A. (2003) Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules 4(3), 641-648. DOI: 10.1021/bm025724c
  • [23] Elsabee MZ, Morsi RE, Al-Sabagh AM. (2009) Surface active properties of chitosan and its derivatives. Colloids Surfaces B Biointerfaces 74(1), 1-16. DOI:10.1016/j.colsurfb.2009.06.021
  • [24] Branca C, D’Angelo G, Crupi C, et al. (2016) Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer 99, 614-622. DOI: 10.1016/j.polymer.2016.07.086
  • [25] Hwang KT, Kim JT, Jung ST, Cho GS, Park HJ. (2003) Properties of chitosanbased biopolymer films with various degrees of deacetylation and molecular weights. J Appl Polym Sci 89(13), 3476-3484. DOI: 10.1002/app.12561
  • [26] Rhim J-W, Weller CL, Ham K-S. (1998) Characteristics of Chitosan Films as Affected by the Type of Solvent Acid. Food Sci Biotechnol 7, 263.
  • [27] Tomihata K, Ikada Y. (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7), 567-575. DOI: 10.1016/S0142-9612(96)00167-6
  • [28] Blair HS, Guthrie J, Law T-K, Turkington P. (1987) Chitosan and modified chitosan membranes I. Preparation and characterisation. J Appl Polym Sci 33(2), 641-656. DOI: 10.1002/app.1987.070330226
  • [29] Modrzejewska Z, Maniukiewicz W, Wojtasz-pająk A. (2006) Determination of Hydrogel Chitosan Membrane Structure. Prog Chem Appl Chitin its Deriv 11, 113-121.
  • [30] Trung TS, Thein-Han WW, Qui NT, Ng CH, Stevens WF. (2006) Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresour Technol 97(4), 59-663. DOI:10.1016/j.biortech.2005.03.023
  • [31] Mima S, Miya M, Iwamoto R, Yoshikawa S. (1983) Highly deacetylated chitosan and its properties. J Appl Polym Sci 28(6), 1909-1917. DOI: 10.1002/app.1983.070280607
  • [32] Tsukada K, Matsunaga Y, Isshiki R, Nakamura Y, Sakai K, Kiwa T. (2017) Magnetic characteristics measurements of ethanol-water mixtures using a hybridtype high-temperature superconducting quantum-interference device magnetometer. AIP Adv 7(5). DOI: 10.1063/1.4973950
  • [33] Stolarczyk A, Turczyn R, Januszkiewicz-Kaleniak A, Domagała W, Imach S. (2013) Determination and comparison of ideal and practical selectivity coefficients of membranes containing different conductive polymers. Acta Phys Pol A 124(3), 563-566. DOI: 10.12693/APhysPolA.124.563

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e24ee390-e086-44e9-98e7-2bc95580ea1d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.