Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 77 | 217–225

Article title

Comparison of course of infections and antibiotherapy in patients with and without diabetes mellitus – one center experience

Content

Title variants

PL
Porównanie przebiegu infekcji oraz zastosowanej antybiotykoterapii u pacjentów chorych na cukrzycę i bez cukrzycy – doświadczenie jednego centrum medycznego

Languages of publication

EN PL

Abstracts

EN
INTRODUCTION: Infections affect all patients, including those with diabetes mellitus (DM), which can determine the course of infection. The aim of the study was to compare the course and treatment of infection in patients with DM and without DM. MATERIAL AND METHODS: 180 medical records of patients hospitalized in 2021 at the Department of Internal Medicine, Autoimmune and Metabolic Diseases in Katowice, with infections were analyzed. The analysis included age, sex, clinical diagnosis, DM treatment, antibiotic therapy, and laboratory parameters. The Statistica program was used for statistical analysis. RESULTS: The most prevalent reasons for hospitalization in both groups were: pneumonia in the course of COVID-19 (35.5% DM vs 33.7% non-DM) and urinary tract infections (26.3% DM vs 19.2% non-DM). Significantly more non-DM patients required polyantibiotic treatment (69.7% DM vs 89.4% non-DM). The most frequently used antibiotics were β-lactams (59.2% DM vs 57.7% non-DM). In-hospital mortality was 20% (21% DM vs 19.2% non-DM). The length of hospitalization was 1–35 days, the median in the whole group was 9 days (10 days DM vs 8 days non-DM). Both the initial and terminal CRP concentrations were analyzed. The median of the initial value was 71.6 (72.3 DM vs 66.2 non-DM) and the median of the terminal value was 17.15 (17.9 DM vs 15.3 non-DM). The glucose concentration on admission was assessed with the median 123.5 mg/dL (156 mg/dL DM vs 107 mg/dL non-DM). CONCLUSIONS: Many DM complications are well known, yet the course and treatment of infection do not differ significantly in patients with DM and without DM. Despite that, each patient should be considered individually, so the chosen treatment constitutes an optimized therapy.
PL
WSTĘP: Zakażenia występują u wszystkich pacjentów, w tym także u chorych na cukrzycę (diabetes mellitus – DM), której współwystąpienie może jednak determinować przebieg zakażenia. Celem pracy było porównanie przebiegu i leczenia infekcji u chorych z DM i bez DM. MATERIAŁ I METODY: Analizie poddano dokumentację medyczną 180 pacjentów hospitalizowanych w 2021 r. w Klinice Chorób Wewnętrznych, Autoimmunologicznych i Metabolicznych w Katowicach z powodu infekcji. W analizie uwzględniono wiek, płeć, rozpoznanie kliniczne, metodę leczenia DM, antybiotykoterapię i parametry laboratoryjne. Do analizy statystycznej wykorzystano program Statistica. WYNIKI: Najczęstszymi przyczynami hospitalizacji w obu grupach były: zapalenie płuc w przebiegu COVID-19 (35,5% DM vs 33,7% bez DM) oraz infekcje dróg moczowych (26,3% DM vs 19,2% bez DM). Istotnie więcej pacjentów bez DM wymagało leczenia z użyciem wielu antybiotyków (69,7% DM vs 89,4% bez DM). Najczę-ściej stosowanymi antybiotykami były β-laktamy (59,2% DM vs 57,7% bez DM). Śmiertelność wewnątrzszpi-talna wyniosła 20% (21% DM vs 19,2% bez DM). Czas hospitalizacji wynosił 1–35 dni, mediana w całej grupie wyniosła 9 dni (10 dni w przypadku DM vs 8 dni bez DM). Analizowano zarówno początkowe, jak i końcowe stężenie CRP. Mediana wartości początkowej wyniosła 71,6 (72,3 DM vs 66,2 bez DM), a mediana wartości końcowej 17,15 (17,9 DM vs 15,3 bez DM). Mediana stężenia glukozy przy przyjęciu wynosiła 123,5 mg/dL (156 mg/dL DM vs 107 mg/dL bez DM). WNIOSKI: Wiele powikłań DM jest dobrze znanych, jednak przebieg i leczenie infekcji nie różnią się istotnie u pacjentów z DM i bez DM. Mimo to do każdego pacjenta należy podchodzić indywidualnie, tak aby wybrane leczenie stanowiło zoptymalizowaną terapię.

Discipline

Year

Issue

77

Pages

217–225

Physical description

Contributors

author
  • Students’ Scientific Club at the Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
author
  • Students’ Scientific Club at the Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
  • Students’ Scientific Club at the Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
  • Students’ Scientific Club at the Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
  • Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
author
  • Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland

References

  • 1. Baena-Díez J.M., Peñafiel J., Subirana I., Ramos R., Elosua R., Marín-Ibañez A. et al. Risk of cause-specific death in individuals with diabetes: A competing risks analysis. Diabetes Care 2016; 39(11): 1987–1995, doi: 10.2337/dc16-0614.
  • 2. Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018; 138: 271–281, doi: 10.1016/j.diabres.2018.02.023.
  • 3. Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010; 87(1): 4–14, doi: 10.1016/j.diabres.2009.10.007.
  • 4. International Diabetes Federation. IDF Diabetes Atlas, 1st edn. Brus-sels, Belgium 2000.
  • 5. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium 2021.
  • 6. Topor‐Madry R., Wojtyniak B., Strojek K., Rutkowski D., Bogusławski S., Ignaszewska-Wyrzykowska A. et al. Prevalence of diabetes in Poland: a combined analysis of national databases. Diabet. Med. 2019; 36(10): 1209–1216, doi: 10.1111/dme.13949.
  • 7. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215–2222, doi: 10.1016/s0140-6736(10)60484-9.
  • 8. Abu-Ashour W., Twells L., Valcour J., Randell A., Donnan J., Howse P. et al. The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies. BMJ Open Diabetes Res. Care 2017; 5(1): e000336, doi: 10.1136/bmjdrc-2016-000336.
  • 9. Tillin T., Hughes A.D., Mayet J., Whincup P., Sattar N., Forouhi N.G. et al. The relationship between metabolic risk factors and incident cardiovascular disease in Europeans, South Asians, and African Caribbeans: SABRE (Southall and Brent Revisited) – a prospective population-based study. J. Am. Coll. Cardiol. 2013; 61(17): 1777–1786, doi: 10.1016/j.jacc.2012.12.046.
  • 10. Casqueiro J., Casqueiro J., Alves C. Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J. Endocrinol. Metab. 2012; 16(Suppl 1): S27–S36, doi: 10.4103/2230-8210.94253.
  • 11. Peleg A.Y., Weerarathna T., McCarthy J.S., Davis T.M. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab. Res. Rev. 2007; 23(1): 3–13, doi: 10.1002/dmrr.682.
  • 12. Flyvbjerg A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat. Rev. Endocrinol. 2010; 6(2): 94–101, doi: 10.1038/nrendo.2009.266.
  • 13. Wang H., Liu M. Complement C4, infections, and autoimmune diseases. Front. Immunol. 2021; 12: 694928, doi: 10.3389/fimmu.2021.694928.
  • 14. Geerlings S.E., Hoepelman A.I. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol. Med. Microbiol. 1999; 26(3–4): 259–265, doi: 10.1111/j.1574-695x.1999.tb01397.x.
  • 15. Khazai N.B., Hamdy O. Inpatient diabetes management in the twenty-first century. Endocrinol. Metab. Clin. North Am. 2016; 45(4): 875–894, doi: 10.1016/j.ecl.2016.06.013.
  • 16. Gupta S., Koirala J., Khardori R., Khardori N. Infections in diabetes mellitus and hyperglycemia. Infect. Dis. Clin. North Am. 2007; 21(3): 617–638, doi: 10.1016/j.idc.2007.07.003.
  • 17. van Niekerk G., Davis T., Patterton H.G., Engelbrecht A.M. How does inflammation induced hyperglycemia cause mitochondrial dysfunction in immune cells? Bioessays 2019; 41(5): 1800260, doi: 10.1002/bies.201800260.
  • 18. Atreja A., Kalra S. Infections in diabetes. J. Pak. Med. Assoc. 2015; 65(9): 1028–1030.
  • 19. Shah B.R., Hux J.E. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care 2003; 26(2): 510–513, doi: 10.2337/diacare.26.2.510.
  • 20. Zoppini G., Fedeli U., Schievano E., Dauriz M., Targher G., Bonora E. et al. Mortality from infectious diseases in diabetes. Nutr. Metab. Cardiovasc. Dis. 2018; 28(5): 444–450, doi: 10.1016/j.numecd.2017.12.007.
  • 21. Zhu L., She Z.G., Cheng X., Qin J.J., Zhang X.J., Cai J. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020; 31(6): 1068–1077.e3, doi: 10.1016/j.cmet.2020.04.021.
  • 22. Guo T., Shen Q., Ouyang X., Guo W., Li J., He W. et al . Clinical fin-dings in diabetes mellitus patients with COVID-19. J. Diabetes Res. 2021; 2021: 7830136, doi: 10.1155/2021/7830136.
  • 23. Fünfstück R., Nicolle L.E., Hanefeld M., Naber K.G. Urinary tract infection in patients with diabetes mellitus. Clin. Nephrol. 2012; 77(1): 40–48, doi: 10.5414/cn107216.
  • 24. Davies K., Lawrence J., Berry C., Davis G., Yu H., Cai B. et al. Risk factors for primary Clostridium difficile infection; results from the observational study of risk factors for Clostridium difficile infection in hospitalized patients with infective diarrhea (ORCHID). Front. Public Health 2020; 8: 293, doi: 10.3389/fpubh.2020.00293.
  • 25. Meier K., Nordestgaard A.T., Eid A.I., Kongkaewpaisan N., Lee J.M., Kongwibulwut M. et al. Obesity as protective against, rather than a risk factor for, postoperative Clostridium difficile infection: a nationwide retrospective analysis of 1,426,807 surgical patients. J. Trauma Acute Care Surg. 2019; 86(6): 1001–1009, doi: 10.1097/TA.0000000000002249.
  • 26. Knapp S. Diabetes and infection: is there a link? A mini-review. Gerontology 2013; 59(2): 99–104, doi: 10.1159/000345107.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-c7f17b2b-19a8-4ecc-8a1f-652a5997fcc3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.