Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 28 | 56-74

Article title

THE USE OF CHITIN IN THE MOULTS AND EXOSKELETONS OF MEALWORMS (TENEBRIO MOLITOR) TO REMOVE CATIONIC DYES FROM AQUEOUS SOLUTIONS

Content

Title variants

Languages of publication

EN

Abstracts

EN
We analysed the feasibility of using unmodified chitin exoskeletons and moults of mealworms (Tenebrio molitor) as adsorbents to remove cationic dyes – Basic Violet 10 (BV10) and Basic Red 46 (BR46) – from aqueous solutions. We evaluated the characteristics of the adsorption materials using Fourier-transform infrared spectroscopy and determining the pH of the point of zero charge (pHPZC); the pH effect on dye adsorption effectiveness; dye adsorption kinetics (pseudo–first order, pseudo–second order, and intramolecular diffusion models); and the maximum adsorption capacity of the adsorbents (Langmuir 1 and 2 and Freundlich isotherms). BV10 adsorption on the tested adsorbents was the highest at pH 3, while adsorption of BR46 was highest at pH 6. The adsorption equilibrium time depended mainly on the dye type and its initial concentration; it was 150–210 min for BV10 and 120–150 min for BR46. The maximum adsorption capacity of mealworm exoskeletons reached 5.56 mg/g for BV10 and 31.53 mg/g for BR46, whereas mealworm moults exhibited a higher maximum adsorption capacity, reaching 6.44 mg/g for BV10 and 5.56 mg/g for BR46.

Year

Volume

28

Pages

56-74

Physical description

Contributors

  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 Str., 10–720 Olsztyn, Poland
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 Str., 10–720 Olsztyn, Poland
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117 Str., 10–720 Olsztyn, Poland
  • Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10–718 Olsztyn, Poland

References

  • [1] Rane A, Joshi SJ; (2021) Biodecolorization and biodegradation of dyes: a review. Open Biotechnol J 15, 97–108. DOI:10.2174/1874070702115010097
  • [2] Eltahan N, Kiwaan HA; (2022) Dyes, environmental impact and remediation by physical and chemical methods. SSRN Electronic J. DOI:10.2139/SSRN.4169103
  • [3] Al-Zawahreh K, Barral MT, Al-Degs Y, Paradelo R; (2021) Comparison of the sorption capacity of basic, acid, direct and reactive dyes by compost in batch conditions. J Environ Manage 294, 113005. DOI:10.1016/J.JENVMAN.2021.113005
  • [4] Algarni T saad, Al-Mohaimeed AM; (2022) Water purification by adsorption of pigments or pollutants via metaloxide. J King Saud Univ Sci 34, 102339. DOI:10.1016/J.JKSUS.2022.102339
  • [5] Deaconu M, Senin R; (2016) Adsorption decolorization technique of textile/leather - dye containing effluents. Int J Waste Resour 6, 2. DOI:10.4172/2252–5211.1000212
  • [6] Jóźwiak T, Filipkowska U, Bakuła T, Bralewska-Piotrowicz B, Karczmarczyk K, Gierszewska M, Olewnik-Kruszkowska E, Szyryńska N, Lewczuk B; (2023) The use of chitin from the molts of mealworm (Tenebrio molitor) for the removal of anionic and cationic dyes from aqueous solutions. Materials 16, 545. DOI:10.3390/MA16020545/S1
  • [7] Elieh-Ali-Komi D, Hamblin MR, Daniel E-A-K; (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4, 411
  • [8] Sindermann D, Heidhues J, Kirchner S, Stadermann N, Kuhl A; (2021) Industrial processing technologies for insect larvae. J Insects Food Feed 7, 857–875. DOI:10.3920/JIFF2020.0103
  • [9] Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P; (2022) Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 12, 1–17. DOI:10.1038/s41598–022–10423–5
  • [10] Abidin NAZ, Kormin F, Abidin NAZ, Anuar NAFM, Bakar MFA; (2020) The potential of insects as alternative sources of chitin: an overview on the chemical method of extraction from various sources. Int J Mol Sci 21, 1–25. DOI:10.3390/IJMS21144978
  • [11] Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH, Noh MY, Park YK, Kim SA, Kim YW, Jung WJ; (2018) Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol Res 48, 227–233. DOI:10.1111/1748–5967.12304
  • [12] Mendez-Alpuche AA, Ríos-Soberanis CR, Rodriguez-Laviada J, Perez-Pacheco E, Zaldivar-Rae JA; (2020) Physicochemical comparison of chitin extracted from horseshoe crab (Limulus polyphemus) exoskeleton and exuviae. ChemistrySelect 5, 11745–11752. DOI:10.1002/SLCT.202000085
  • [13] Dahmane EM, Taourirte M, Eladlani N, Rhazi M; (2014) Extraction and characterization of chitin and chitosan from Parapenaeus longirostris from Moroccan local sources. Int J Polym Anal Charac 19, 342–351. DOI:10.1080/1023666X.2014.902577
  • [14] Negrea P, Cauni A, Kasapsaraçoğlu I, Butnariu M; (2015) The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass. Dig J Nanomater Biostruct 10, 1129–1138
  • [15] Lozano M, Rodríguez-Ulibarri P, Echeverría JC, Beruete M, Sorolla M, Beriain MJ; (2017) Mid-infrared spectroscopy (MIR) for simultaneous determination of fat and protein content in meat of several animal species. Food Anal Methods 10, 3462–3470. DOI:10.1007/S12161–017–0879–1
  • [16] Kaya M, Sargin I, Aylanc V, Tomruk MN, Gevrek S, Karatoprak I, Colak N, Sak YG, Bulut E; (2016) Comparison of bovine serum albumin adsorption capacities of α-chitin isolated from an insect and β-chitin from cuttlebone. J Indust Eng Chem 38, 146–156. DOI:10.1016/J.JIEC.2016.04.015
  • [17] Bölgen N, Demir D, Öfkeli F, Ceylan S; (2016) Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds. J Turk Chem Soc A Chem 3, 131–144. DOI:10.18596/JOTCSA.00634
  • [18] Józwiak T, Filipkowska U, Bugajska P, Kalkowski T; (2018) The use of coconut shells for the removal of dyes from aqueous solutions. J Ecol Eng 19, 129–135. DOI:10.12911/22998993/89672
  • [19] Kowalkowska A, Jóźwiak T; (2019) Utilization of pumpkin (Cucurbita pepo) seed husks as a low-cost sorbent for removing anionic and cationic dyes from aqueous solutions. Desalination Water Treat 171, 397–407. DOI:10.5004/DWT.2019.24761
  • [20] Jóźwiak T, Filipkowska U, Struk-Sokołowska J, Bryszewski K, Trzciński K, Kuźma J, Ślimkowska M; (2021) The use of spent coffee grounds and spent green tea leaves for the removal of cationic dyes from aqueous solutions. Sci Rep 11, 1–12. DOI:10.1038/s41598–021–89095–6
  • [21] Akkari I, Graba Z, Bezzi N, Vithanage M, Kaci MM; (2022) New insights into the effective removal of Basic Red 46 onto activated carbon produced from pomegranate peels. Biomass Convers Biorefin 1, 1–14. DOI:10.1007/S13399–022–03401–4/TABLES/6
  • [22] Li L, Liu H, Li W, Liu K, Tang T, Liu J, Jiang W; (2020) One-step synthesis of an environment-friendly cyclodextrin-based nanosponge and its applications for the removal of dyestuff from aqueous solutions. Res Chem Intermed 46, 1715–1734. DOI:10.1007/S11164–019–04059-W/TABLES/3
  • [23] Porkodi K, Vasanth Kumar K; (2007) Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: eosin yellow, malachite green and crystal violet single component systems. J Hazard Mater 143, 311–327. DOI:10.1016/J.JHAZMAT.2006.09.029
  • [24] Jóźwiak T, Filipkowska U, Pyko B; (2022) Use of waste biomass of common mushroom (Agaricus bisporus) as a sorbent for the removal of Reactive Black 5 and Basic Violet 10 dyes from aqueous solutions. Desalination Water Treat 272, 303–315. DOI:10.5004/DWT.2022.28843
  • [25] Hamzeh Y, Ashori A, Azadeh E, Abdulkhani A; (2012) Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater Sci Eng C 32, 1394–1400. DOI:10.1016/J.MSEC.2012.04.015
  • [26] Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS; (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater 95, 137–152. DOI:10.1016/S0304–3894(02)00089–4
  • [27] Shen K, Gondal MA; (2017) Removal of hazardous rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21, S120-S127. DOI:10.1016/J.JSCS.2013.11.005
  • [28] Namasivayam C, Dinesh Kumar M, Selvi K, Ashruffunissa Begum R, Vanathi T, Yamuna RT; (2001) ‘Waste’ coir pith—a potential biomass for the treatment of dyeing wastewaters. Biomass Bioenergy 21, 477–483. DOI:10.1016/S0961–9534(01)00052–6
  • [29] Jóźwiak T, Filipkowska U, Filipkowska M; (2022) Effect of ionic and covalent crosslinking of hydrogel chitosan beads on the adsorption efficiency of Basic Violet 10 and Basic Green 4 dyes from aqueous solutions. Prog Chem Appl Chitin Deriv 27, 116–134. DOI:10.15259/PCACD.27.009
  • [30] Khan TA, Sharma S, Ali I; (2011) Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J Toxicol Environ Health Sci 3, 286–297. DOI:10.5897/JTEHS.9000003
  • [31] Jóźwiak T, Filipkowska U, Zajko P; (2019) Use of citrus fruit peels (grapefruit, mandarin, orange, and lemon) as sorbents for the removal of basic violet 10 and basic red 46 from aqueous solutions. Desalination Water Treat 163, 385–397. DOI:10.5004/DWT.2019.24453
  • [32] Parab H, Sudersanan M, Shenoy N, et al; (2009) Use of agro-industrial wastes for removal of basic dyes from aqueous solutions. Clean 37, 963–969. DOI:10.1002/CLEN.200900158
  • [33] Ho YS, Chiu WT, Wang CC; (2005) Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour Technol 96, 1285–1291. DOI:10.1016/J.BIORTECH.2004.10.021
  • [34] Sureshkumar M V., Namasivayam C; (2008) Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith. Colloids Surf A Physicochem Eng Asp 317, 277–283. DOI:10.1016/J.COLSURFA.2007.10.026
  • [35] Zamouche M, Hamdaoui O; (2012) Sorption of Rhodamine B by cedar cone: effect of pH and ionic strength. Energy Proc 18, 1228–1239. DOI:10.1016/J.EGYPRO.2012.05.138
  • [36] Annadurai G, Juang RS, Lee DJ; (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92, 263–274. DOI:10.1016/S0304–3894(02)00017–1
  • [37] Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD; (2010) Removal of Rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies. J Chem Eng Data 55, 5777–5785. DOI:10.1021/JE100730A
  • [38] Filipkowska U, Jόźwiak T, Szymczyk P, Kuczajowska-Zadrożna M; (2017) The use of active carbon immobilised on chitosan beads for RB5 and BV10 dye removal from aqueous solutions. Prog Chem Appl Chitin Deriv 22, 14–26. DOI:10.15259/PCACD.22.02
  • [39] Jóźwiak T, Filipkowska U, Marciniak P; (2021) Use of hen feathers to remove reactive black 5 and basic red 46 from aqueous solutions. Desalination Water Treat 232, 129–139. DOI:10.5004/DWT.2021.27513
  • [40] Doltabadi M, Alidadi H, Davoudi M; (2016) Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust‐based adsorbent. Environ Prog Sustain Energy 4, 1078–1090. DOI:10.1002/EP.12334
  • [41] Laasri L, Elamrani MK, Cherkaoui O; (2007) Removal of two cationic dyes from a textile effluent by filtration-adsorption on wood sawdust. Env Sci Poll Res Int 14, 237–240. DOI:10.1065/espr2006.08.331
  • [42] El Haddad M, Rachid M, Slimani R, Nabil S, Ridaoui M, Lazar S; (2012) Adsorptive removal of a cationic dye -Basic Red 46 -from aqueous solutions using animal bone meal. J Eng Stud Res 18. 43–52.
  • [43] Yeddou N, Bensmaili A; (2005) Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture. Desalination 185, 499–508. DOI:10.1016/J.DESAL.2005.04.053
  • [44] Deniz F, Saygideger SD; (2011) Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf. Desalination 268, 6–11. DOI:10.1016/J.DESAL.2010.09.043
  • [45] Madeła M, Krzemińska D, Neczaj E; (2014) Wpływ procesu Fentona na skuteczność usuwania zanieczyszczeń ze ścieków przemysłowych na węglach aktywnych. Technologia Wody 37, 46–50.
  • [46] Azmi NAI, Zainudin NF, Ali UFM; (2015) Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon. AIP Conf Proc 1660, 070068. DOI:10.1063/1.4915786
  • [47] Abdul Halim HN, Mee KLK; (2011) Adsorption of Basic Red 46 by granular activated carbon in a fixed- bed column. Int Conf Environ Ind Innov 12, 263–267.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-a0007154-3c81-44e0-a6fc-83b4510272c3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.