Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 11 | 4 | 237-243

Article title

CADASIL – rola systemu sygnałowego Notch 3 w patomechanizmie choroby

Content

Title variants

EN
CADASIL – role of Notch 3 signaling system in pathomechanism of the disease

Languages of publication

PL

Abstracts

PL
System sygnałowy Notch jest bardzo konserwatywnym systemem komunikacji międzykomórkowej, odgrywającym istotną rolę zarówno w rozwoju naczyń, jak i w patogenezie niektórych chorób naczyniowych. Jednym z takich schorzeń jest genetycznie uwarunkowana choroba małych naczyń o nazwie CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). Choroba ta wiąże się z występowaniem mutacji w genie NOTCH 3 kodującym transbłonowy receptor o tej samej nazwie obecny w naczyniach tylko na komórkach mięśniówki gładkiej i pericytach. W przebiegu choroby uszkodzone są głównie małe naczynia tętnicze i naczynia włosowate, w których ścianie stwierdza się zwyrodnienie i ubytek komórek wykazujących ekspresję Notch 3 oraz gromadzenie się zewnątrzkomórkowej domeny receptora Notch 3 (N3-ECD) i złogów gęstego osmofilnego materiału (GOM) zawierającego N3-ECD. Chociaż patogeneza CADASIL-u jest nadal nieznana, obecnie istnieją dwie zasadniczo odmienne hipotezy dotyczące przyczyn rozwoju tego schorzenia. Pierwsza z nich zakłada, że choroba jest związana z nieprawidłowym funkcjonowaniem zmutowanego receptora Notch 3, który nabywa nowych właściwości. Według drugiej hipotezy CADASIL – podobnie jak wiele innych chorób neurodegeneracyjnych – jest proteinopatią spowodowaną odkładaniem się w ścianie naczyń patologicznych złogów białkowych. Niniejsza praca stanowi przegląd aktualnej wiedzy dotyczącej roli Notch 3 w biologii naczyń krwionośnych i hipotetycznego udziału tego systemu sygnałowego w patogenezie CADASIL-u.
EN
Notch signaling is a very conservative system of cell-cell communications playing an essential role in vascular development and human vascular diseases. One of such diseases is a hereditary vascular degenerative disorder known as cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL). The disorder is caused by mutations in the NOTCH 3 gene encoding a transmembrane receptor of the same name present in vessels only on vascular smooth muscle cells and pericytes. The disease involves mainly small arteries and capillaries in which degeneration and loss of cells expressing Notch 3 receptor is observed. In the affected vessels accumulation of Notch 3 extracellular domain (N3-ECD) and granular osmiophilic material (GOM) containing N3-ECD are also found. Although pathogenesis of CADASIL is still unknown there are two main distinct hypotheses concerning its development. The first of them assumes that the disease is caused by dysfunction of the mutated Notch 3 receptor which acquires a new properties. According to the second hypothesis, CADASIL – as many other neurodegenerative diseases – is a proteinopathy due to accumulation of proteinaceous aggregates in vessel wall. This paper is an overview of recent findings concerning the role of Notch 3 in vascular biology and hypothetical participation of that signaling system in CADASIL pathogenesis

Discipline

Year

Volume

11

Issue

4

Pages

237-243

Physical description

Contributors

  • Katedra i Klinika Neurologii, Warszawski Uniwersytet Medyczny, Zakład Neuropatologii Doświadczalnej i Klinicznej, IMDiK PAN, Warszawa

References

  • 1. Leong K.G., Karsan A.: Recent insights into the role of Notch signaling in tumorigenesis. Blood 2006; 107: 2223-2233.
  • 2. Karsan A.: The role of Notch in modeling and maintaining the vasculature. Can. J. Physiol. Pharmacol. 2005; 83: 14-23.
  • 3. Shawber C.J., Kitajewski J.: Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 2004; 26: 225-234.
  • 4. Hofmann J.J., Iruela-Arispe M.L.: Notch signaling in blood vessels. Who is taking to whom about what? Circ. Res. 2007; 100: 1556-1568.
  • 5. Domenga V., Fardoux P., Lacombe P. i wsp.: Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 2004; 18: 2730-2735.
  • 6. Noguera-Troise I., Daly C., Papadopoulos N.J. i wsp.: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444: 1032-1037.
  • 7. Ridgway J., Zhang G., Wu Y. i wsp.: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444: 1083-1087.
  • 8. Krebs L.T., Xue Y., Norton C.R. i wsp.: Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 2003; 37: 139-143.
  • 9. Campos A.H., Wang W., Pollman M.J., Gibbons G.H.: Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation. Circ. Res. 2002; 91: 999-1006.
  • 10. Owens G.K., Kumar M.S., Wamhoff B.R.: Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 2004; 84: 767-801.
  • 11. Roca C., Adams R.H.: Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 2007; 21: 2511-2524.
  • 12. Wang T., Baron M., Trump D.: An overview of Notch3 function in vascular smooth muscle cells. Prog. Biophys. Mol. Biol. 2008; 96: 499-509.
  • 13. Felli M.P., Maroder M., Mitsiadis T.A. i wsp.: Expression pattern of Notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand-receptor interactions in intrathymic T cell development. Int. Immunol. 1999; 11: 1017-1025.
  • 14. Anastasi E., Campese A.F., Bellavia D. i wsp.: Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J. Immunol. 2003; 171: 4504-4511.
  • 15. Mailhos C., Modlich U., Lewis J. i wsp.: Delta4, an endothelial specific Notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 2001; 69: 135-144.
  • 16. Vorontchikhina M.A., Zimmermann R.C., Shawber C.J. i wsp.: Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation. Gene Expr. Patterns 2005; 5: 701-709.
  • 17. Hurlbut G.D., Kankel M.W., Lake R.J., Artavanis-Tsakonas S.: Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 2007; 19: 166-175.
  • 18. Blair S.S.: Notch signaling: Fringe really is a glycosyltransferase. Curr. Biol. 2000; 10: R608-R612.
  • 19. Gridley T.: Notch signaling in vascular development and physiology. Development 2007; 134: 2709-2718.
  • 20. Gray G.E., Mann R.S., Mitsiadis E. i wsp.: Human ligands of the Notch receptor. Am. J. Pathol. 1999; 154: 785-794.
  • 21. Ikeuchi T., Sisodia S.S.: The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent “γ-secretase” cleavage. J. Biol. Chem. 2003; 278: 7751-7754.
  • 22. Sakamoto K., Ohara O., Takagi M. i wsp.: Intracellular cellautonomous association of Notch and its ligands: a novel mechanism of Notch signal modification. Dev. Biol. 2002; 241: 313-326.
  • 23. Shimizu K., Chiba S., Kumano K. i wsp.: Mouse Jagged1 physically interacts with Notch2 and other Notch receptors. Assessment by quantitative methods. J. Biol. Chem. 1999; 274: 32961-32969.
  • 24. Klein T., Brennan K., Arias A.M.: An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev. Biol. 1997; 189: 123-134.
  • 25. Micchelli C.A., Rulifson E.J., Blair S.S.: The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 1997; 124: 1485-1495.
  • 26. Krämer H.: Neuralized: regulating Notch by putting away delta. Dev. Cell 2001; 1: 725-726.
  • 27. Artavanis-Tsakonas S., Rand M.D., Lake R.J.: Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770-776.
  • 28. Lasky J.L., Wu H.: Notch signaling, brain development, and human disease. Pediatr. Res. 2005; 57: 104R-109R.
  • 29. Ladi E., Nichols J.T., Ge W. i wsp.: The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol. 2005; 170: 983-992.
  • 30. LaVoie M.J., Selkoe D.J.: The Notch ligands, Jagged and Delta, are sequentially processed by α-secretase and presenilin/ γ-secretase and release signaling fragments. J. Biol. Chem. 2003; 278: 34427-34437.
  • 31. Lai E.C.: Notch signaling: control of cell communication and cell fate. Development 2004; 131: 965-973.
  • 32. Wu J., Bresnick E.H.: Bare rudiments of Notch signaling: how receptor levels are regulated. Trends Biochem. Sci. 2007; 32: 477-485.
  • 33. Karlström H., Beatus P., Dannaeus K. i wsp.: A CADASILmutated Notch 3 receptor exhibits impaired intracellular trafficking and maturation but normal ligand-induced signaling. Proc. Natl Acad. Sci. USA 2002; 99: 17119-17124.
  • 34. Kitamoto T., Takahashi T., Takimoto H. i wsp.: Functional redundancy of the Notch gene family during mouse embryogenesis: analysis of Notch gene expression in Notch3-deficient mice. Biochem. Biophys. Res. Commun. 2005; 331: 1154-1162.
  • 35. Arboleda-Velasquez J.F., Zhou Z., Shin H.K. i wsp.: Linking Notch signaling to ischemic stroke. Proc. Natl Acad. Sci. USA 2008; 105: 4856-4861.
  • 36. Sedding D.G., Seay U., Fink L. i wsp.: Mechanosensitive p27Kip1 regulation and cell cycle entry in vascular smooth muscle cells. Circulation 2003; 108: 616-622.
  • 37. Morrow D., Sweeney C., Birney Y.A. i wsp.: Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cells in vitro. Circ. Res. 2005; 96: 567-575.
  • 38. Belin de Chantemèle E.J., Retailleau K., Pinaud F. i wsp.: Notch3 is a major regulator of vascular tone in cerebral and tail resistance arteries. Arterioscler. Thromb. Vasc. Biol. 2008; 28: 2216-2224.
  • 39. Davis M.J., Wu X., Nurkiewicz T.R. i wsp.: Integrins and mechanotransduction of the vascular myogenic response. Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H1427-H1433.
  • 40. Heerkens E.H.J., Izzard A.S., Heagerty A.M.: Integrins, vascular remodeling, and hypertension. Hypertension 2007; 49: 1-4.
  • 41. Hussain M.B., Singhal S., Markus H.S., Singer D.R.: Abnormal vasoconstrictor responses to angiotensin II and noradrenaline in isolated small arteries from patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Stroke 2004; 35: 853-858.
  • 42. Gobron C., Vahedi K., Vicaut E. i wsp.: Characteristic features of in vivo skin microvascular reactivity in CADASIL. J. Cereb. Blood Flow Metab. 2007; 27: 250-257.
  • 43. Stenborg A., Kalimo H., Viitanen M. i wsp.: Impaired endothelial function of forearm resistance arteries in CADASIL patients. Stroke 2007; 38: 2692-2697.
  • 44. Pfefferkorn T., von Stuckrad-Barre S., Herzog J. i wsp.: Reduced cerebrovascular CO2 reactivity in CADASIL: a transcranial Doppler sonography study. Stroke 2001; 32: 17-21.
  • 45. Chabriat H., Pappata S., Ostergaard L. i wsp.: Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke 2000; 31: 1904-1912.
  • 46. Ruchoux M.M., Domenga V., Brulin P. i wsp.: Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am. J. Pathol 2003; 162: 329-342.
  • 47. Lacombe P., Oligo C., Domenga V. i wsp.: Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 2005; 36: 1053-1058.
  • 48. Dubroca C., Lacombe P., Domenga V. i wsp.: Impaired vascular mechanotransduction in a transgenic mouse model of CADASIL arteriopathy. Stroke 2005; 36: 113-117.
  • 49. Chabriat H., Bousser M.G., Pappata S.: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a positron emission tomography study in two affected family members. Stroke 1995; 26: 1729-1730.
  • 50. Mellies J.K., Baumer T., Muller J.A. i wsp.: SPECT study of a German CADASIL family: a phenotype with migraine and progressive dementia only. Neurology 1998; 50: 1715-1721.
  • 51. Tuominen S., Miao Q., Kurki T. i wsp.: Positron emission tomography examination of cerebral blood flow and glucose metabolism in young CADASIL patients. Stroke 2004; 35: 1063-1067.
  • 52. Ihalainen S., Soliymani R., Iivanainen E., i wsp.: Proteome analysis of cultivated vascular smooth muscle cells from a CADASIL patient. Mol. Med. 2007; 13: 305-314.
  • 53. Takahashi K., Adachi K., Yoshizaki A. i wsp.: Mutations in NOTCH3 cause the formation and retention of aggregates in the endoplasmic reticulum, leading to impaired cell proliferation. Hum. Mol. Genet. 2010; 19: 79-89.
  • 54. Dziewulska D., Rafałowska J.: Is the increased expression of ubiquitin in CADASIL syndrome a manifestation of aberrant endocytosis in the vascular smooth muscle cells? J. Clin. Neurosci. 2008; 15: 535-540.
  • 55. Opherk C., Duering M., Peters N. i wsp.: CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum. Mol. Genet. 2009; 18: 2761-2767.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-75f004ce-7eee-4b36-bbbd-74d83a44350e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.