Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2025 | 61 | 2 | 320-330

Article title

Isolation and Evaluation of Endophytic Fungi from Two Endangered Orchids of the Western Ghats

Content

Title variants

Languages of publication

EN

Abstracts

EN
Four dominant non-mycorrhizal fungal endophytes isolated from surface-sterilized tissue segments of two indigenous orchids of the Western Ghats (Acampe praemorsa and Luisia curtisii) were selected to assess in vitro production of bioactive metabolites and plant growth promotion. Beauveria bassiana and Botrytis cinerea were dominant endophytes in A. praemorsa, while Phialophora sp. and Sarocladium spinificis dominated in L. curtisii. Beauveria bassiana produced the highest quantity of indole acetic acid (IAA), gibberellic acid (GA) and salicylic acid (SA). Culture suspension of all endophytes significantly induced higher germination compared to the control in seeds of green gram (Vigna radiata), while the radicle length was significantly higher in seeds treated with culture suspension of S. spinificis, followed by Phialophora sp. Being substantial producers of plant growth hormones (IAA and GA) and plant growth regulators (SA), B. bassiana and B. cinerea isolated from A. praemorsa deserve to be evaluated by fermentation techniques with different conditions to enhance their capability. This study also advocates inoculation of fungal endophytes of orchids studied into economically important legumes and cereals to enhance the productivity.

Year

Volume

61

Issue

2

Pages

320-330

Physical description

Contributors

  • Department of Postgraduate Studies in Biotechnology, Alva’s College, Moodbidri, Karnataka, India
  • Department of Postgraduate Studies in Biotechnology, Alva’s College, Moodbidri, Karnataka, India
  • Central Research Laboratory, K.S. Hegde Medical Academy, Mangalore, Karnataka, India

References

  • [1] Kindlmann P, Kull T, McCormick M. The Distribution and Diversity of Orchids. Diversity 2023; 15: 810. https://doi.org/10.3390/d15070810
  • [2] Swarts ND, Dixon KW. Perspectives on orchid conservation in botanic gardens. Trends in Plant Science 2009; 14(11): 590-598. https://doi.org/10.1016/j.tplants.2009.07.008
  • [3] Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo S-X. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. Journal of Plant Growth Regulation 2010; 29: 328-337. https://doi.org/10.1007/s00344-010-9139-y
  • [4] Chen J, Hu KX, Hou XQ, Guo SX. Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World Journal of Microbiology and Biotechnology 2011; 27: 1009-1016. https://doi.org/10.1007/s11274-010-0544-y
  • [5] Gross K, Sun M, Schiestl FP. Why do floral perfumes become different? region-specific selection on floral scent in a terrestrial orchid. PLoS ONE 2016; 11(2): e0147975. https://doi.org/10.1371/journal.pone.0147975
  • [6] Swarts ND, Dixon KW. Terrestrial orchid conservation in the age of extinction. Annal of Botany 2009; 104: 543-556. https://doi.org/10.1093/aob/mcp025
  • [7] Jacquemyn H, Merckx VS. Mycorrhizal symbioses and the evolution of trophic modes in plants. Journal of Ecology 2019; 107: 1567-1581. https://doi.org/10.1111/1365-2745.13165
  • [8] Pant B. Medicinal orchids and their uses: Tissue culture a potential alternative for conservation. African Journal of Plant Science 2013; 7(10): 448-467. https://doi.org/10.5897/AJPS2013.1031
  • [9] Gouda S, Das G, Sen SK, Shin H-S, Patra JK. Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology 2016; 7: 1538. https://doi.org/10.3389/fmicb.2016.01538
  • [10] McCormick MK, Jacquemyn H. What constrains the distribution of orchid populations? New Phytologist 2014; 202: 392-400. https://doi.org/10.1111/nph.12639
  • [11] Van Der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist 2015; 205: 1406-1423. https://doi.org/10.1111/nph.13288
  • [12] Jacquemyn H, Duffy KJ, Selosse M-A. Biogeography of orchid mycorrhizas. In: Tedersoo T (Ed). Biogeography of Mycorrhizal Symbiosis. Springer International Publishing AG, 2017; pp. 159-177. https://doi.org/10.1007/978-3-319-56363-3_8
  • [13] Yuan Z, Chen Y, Yang Y. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World Journal of Microbiol Biotechnology 2009; 25: 295-303. https://doi.org/10.1007/s11274-008-9893-1
  • [14] Bagyalakshmi G, Muthukumar T, Sathiyadash K, Muniappan V. Mycorrhizal and dark septate fungal associations in shola species of Western Ghats, southern India. Mycoscience 2010; 51: 44-52. https://doi.org/10.1007/s10267-009-0009-z
  • [15] Sudheep NM, Sridhar KR. Non-mycorrhizal fungal endophytes in two orchids of Kaiga forest (Western Ghats), India. Journal of Forestry Research 2012; 23(3): 453-460. https://doi.org/10.1007/s11676-012-0284-y
  • [16] Ma X, Kang J, Nontachaiyapoom S, Wen T, Hyde KD. Non-mycorrhizal endophytic fungi from orchids. Current Science 2015; 109: 36-51
  • [17] Adit A, Koul M, Kapoor R, Tandon R. Topological analysis of orchid-fungal endophyte interaction shows lack of phylogenetic preference. South African Journal of Botany 2022; 149: 339-346. https://doi.org/10.1016/j.sajb.2022.06.025
  • [18] Sisti LS, Flores-Borges DNA, de Andrade SAL, Koehler S, Bonatelli ML, Mayer JLS. The Role of Non-Mycorrhizal Fungi in Germination of the Mycoheterotrophic Orchid Pogoniopsis schenckii Cogn. Front. Plant Science 2019; 10: 1589. https://doi.org/10.3389/fpls.2019.01589
  • [19] Shah S, Paudel MR, Thapa BB, Sharm H, Kashyap AK et al. Extract from endophytic Fusarium isolates stimulates seed germination of the host and protocorm development of non-host orchids. Communicative & Integrative Biology 2025; 18(1): 2439798. https://doi.org/10.1080/19420889.2024.2439798
  • [20] Watkinson JI, Winkel BSJ. Diversity of unique, nonmycorrhizal endophytic fungi in cultivated Phalaenopsis orchids: A pilot study. Plant-Environment Interactions. 2024; 5: e10146. https://doi.org/10.1002/pei3.10146
  • [21] Xu JT, Guo SX. Fungus associated with nutrition of seed germination of Gastrodia elata - Mycena osmundicola Lange. Acta Mycologica Sinica 1989; 8: 221-226
  • [22] Leake JR. The biology of myco-heterotrophic (‘saprophytic’) plants. The New Phytologist 1994; 127(2): 171-216. https://doi.org/10.1111/j.1469-8137.1994.tb04272.x
  • [23] Aggarwal S, Nirmala C, Beri S, Rastogi S, Adholeya A. In vitro symbiotic seed germination and molecular characterization of associated endophytic fungi in a commercially important and endangered Indian orchid Vanda coerulea Griff. Ex Lindl. European Journal of Environmental Sciences 2012; 2(1): 33-42. https://doi.org/10.14712/23361964.2015.36
  • [24] Blechert O, Kost G, Hassel A, Rexer RH, Varma A. First remarks on the symbiotic interactions between Piriformospora indica and terrestrial orchid. In: Varma A, Hook B (Ed). Mycorrhizae, 2nd Edition. Springer, Germany 1999; pp. 683-688. https://doi.org/10.1007/978-3-662-03779-9_28
  • [25] Rasmussen HN, Rasmussen FN. Orchid mycorrhiza: implications of a mycophagous life style. Oikos 2009; 118(3): 334-345. https://doi.org/10.1111/j.1600-0706.2008.17116.x
  • [26] Jalal JS, Jayanthi J. Endemic orchids of peninsular India: a review. Journal of Threatened Taxa 2012; 4(15): 3415-3425. https://doi.org/10.11609/JoTT.o3091.3415-25
  • [27] Pal R, Meena NK, Dayamma M, Singh DR. Ethnobotany and recent advances in Indian medicinal orchids. In: Mérillon JM, Kodja H (Ed). Orchids Phytochemistry, Biology and Horticulture: Fundamentals and Applications. Springer 2022; 24: 361-387. https://doi.org/10.1007/9783030383923_26
  • [28] Gang S, Sharma S, Saraf M, Buck M, Schumacher J. Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-Protocol 2019; 9(9): e3230. https://doi.org/10.21769/BioProtoc.3230
  • [29] Berríos J, Illanes A, Aroca G. Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotechnology Letters 2004; 26(1): 7-70. https://doi.org/10.1023/b:bile.0000009463.98203.8b
  • [30] Warrier RR, Paul M, Vineetha MV. Estimation of salicylic acid in Eucalyptus leaves using spectrophotometric methods. Genetics and Plant Physiology 2013; 3(1-2): 90-97
  • [31] Statsoft Inc. Statistica for Windows (Data Analysis Software System), Version 8.0. Computer Program Manual. Tulsa, Oklahoma, USA 2008; p. 298.
  • [32] Liu Y-L, Xi P-G, He X-L, Jiang Z-D. Phialophora avicenniae sp. nov., a new endophytic fungus in Avicennia marina in China. Mycotaxon 2013; 124(1): 31-37. https://doi.org/10.5248/124.31
  • [33] Yeh YH, Kirschner R. Sarocladium spinificis, a new endophytic species from the coastal grass Spinifex littoreus in Taiwan. Botanical Studies 2014; 55(1): 25. https://doi.org/10.1186/1999-3110-55-25
  • [34] Toghueo RMK, Boyom FF. Endophytic fungi from Terminalia species: A comprehensive review. Journal of Fungi 2019; 5(2): 43. https://doi.org/10.3390/jof5020043
  • [35] Bolívar-Anillo HJ, Garrido C, Collado IG. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe 2020; 19(3): 721-740. https://doi.org/10.1007/s11101-019-09603-5
  • [36] Sui L, Lu Y, Zhou L, Li N, Li Q, Zhang Z. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Frontiers in Microbiology 2023; 14: 1227269. https://doi.org/10.3389/fmicb.2023.1227269
  • [37] Macuphe N, Oguntibeju OO, Nchu F. Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (Lactuca sativa L.). Plants 2021; 10(6): 1178. https://doi.org/10.3390/plants10061178
  • [38] Shaalan RS, Gerges E, Habib W, Ibrahim L. Endophytic colonization by Beauveria bassiana and Metarhizium anisopliae induces growth promotion effect and increases the resistance of cucumber plants against Aphis gossypii. Journal of Plant Protection Research 2021; 61(4): 358-370. https://doi.org/10.24425/jppr.2021.139244
  • [39] Saleemi M, Kiani MZ, Sultan T, Khalid A, Mahmood S. Integrated effect of plant growth-promoting rhizobacteria and phosphate-solubilizing microorganisms on growth of wheat (Triticum aestivum L.) under rainfed condition. Agriculture & Food Security 2017; 6(1). https://doi.org/10.1186/s40066-017-0123-7

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-5f12492d-cf31-4086-a43f-41bb35781e91
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.