Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 16 | 3 | 47-54

Article title

Rola związków arsenu w stresie oksydacyjnym oraz w rozwoju cukrzycy

Content

Title variants

EN
The role of arsenic compounds in oxidative stress and in the development of diabetes

Languages of publication

PL

Abstracts

PL
Arsen od wieków był wykorzystywany w medycynie,
między innymi w leczeniu chorób skóry, malarii, cukrzycy,
wrzodów żołądka i białaczki, a w XVIII i XIX wieku stanowił
podstawę ówczesnej farmakologii. Obecnie, ze
względu na jego toksyczne i kancerogenne działanie,
większość związków tego pierwiastka została wycofana
z użycia. Największym zagrożeniem dla człowieka nadal
jest zanieczyszczona arsenem woda pitna oraz przemysł
hutniczy.
Ekspozycja na związki arsenu skutkuje podrażnieniem
żołądkowo-jelitowym, krwiomoczem, wymiotami i biegunką,
a także zmianami skórnymi. W skrajnych przypadkach
może prowadzić do śmierci. Długotrwałe narażenie
najczęściej powoduje choroby naczyń (np. choroba
czarnej stopy) i rozwój nowotworów płuc, skóry, wątroby,
nerek czy pęcherza moczowego.
Arsen jest metalem prozapalnym. Indukuje stres oksydacyjny,
apoptozę, wpływa na proliferację komórek oraz
na przebieg cyklu komórkowego. Pierwiastek ten indukuje
również aterogenezę i prowadzi do różnych chorób układu
sercowo-naczyniowego. Ekspozycja na arsen może powodować
uszkodzenie ośrodkowego układu nerwowego,
a także obwodowe neuropatie i zmiany behawioralne.
Generowanie przez arsen wolnych rodników ma związek
z jego genotoksycznością i przyczynia się do rozwoju
zmian nowotworowych. Według ostatnich badań, arsen
stymuluje też rozwój cukrzycy typu 2. Najbardziej kancerogenne
są związki arsenu na +3 stopniu utlenienia.
Arsen występuje w środowisku zwykle w obecności
innych metali ciężkich, co zwiększa ryzyko pojawienia
się interakcji pomiędzy nimi. Nasila nefrotoksyczność
kadmu i działa antagonistycznie w stosunku do selenu.
Badania dotyczące mechanizmu toksycznego oddziaływania
arsenu na organizm człowieka są bardzo istotne
i zwracają uwagę na problem dostępu do czystej wody
pitnej w niektórych rejonach świata. Ludzie powinni być
świadomi zagrożeń jakie wiążą się z ekspozycją na arsen,
ponieważ jest on wszechobecny zarówno w środowisku
naturalnym, jak i w przemyśle.
EN
For many years arsenic compounds were used in medicine,
including treatment of skin diseases, malaria, diabetes,
malaria, stomach ulcers, leukemia and in the eighteenth
and the nineteenth century formed the basis of
contemporary pharmacology.
Due to its toxicity and carcinogenic activity, most of
the compounds of this element were removed from use.
The major cause of human arsenic toxicity is attributed
to contamination of potable water from natural geological
sources rather than from mining, smelting and agricultural
sources (pesticides or fertilizers). Tobacco smoke
also contains arsenic compounds.
The characteristics of severe acute arsenic toxicity in
humans include gastrointestinal discomfort, vomiting,
diarrhea, skin lesions or even death. Chronic exposure frequently causes vascoocclusive disease (such as Blackfoot
disease), and the development of lung, skin, liver, kidney
and bladder cancers.
Arsenic is a pro-inflammatory metal and appears to
induce oxidative stress, apoptosis, affect cell proliferation
and cell cycle progression. Generation of free radicals by
arsenic is associated with its genotoxicity and contributes
to the development of neoplastic lesions. Exposure to
arsenic can also cause damage of the central nervous system,
peripheral neuropathies, and behavioral changes. It
was shown the association of exposure to arsenic and
type 2 diabetes. Compounds with +3 oxidation state are
more toxic and can induce tumor development.
Arsenic interacts with other heavy metals, e.g. enhances
the toxicity of cadmium nephropathy and acts antagonistically
relative to selenium.
Studies on the mechanism of interacting the toxicity
of arsenic in the human body are crucial and point to
lack of access to pure potable water in some regions of
the world.
People should be aware of the risks that are associated
with exposure to arsenic because it is ubiquitous in the
industry, as well as the environment. Arsenic is also
involved in the spread of lifestyle diseases, especially cancer,
and diabetes. Therefore, understanding of the mechanisms
responsible for toxicity of arsenic compounds is
significant.

Keywords

Contributors

author
  • Katedra i Zakład Biomedycznych Analiz Środowiskowych, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
  • Studenckie Koło Naukowe przy Katedrze i Zakładzie Biomedycznych Analiz Środowiskowych, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
  • Katedra i Zakład Biomedycznych Analiz Środowiskowych, Wydział Farmaceutyczny, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu

References

  • 1. Ghosh P., Banerjee M., Giri A.K., et al.: Toxicogenomics of arsenic: Classical ideas and recent advances. Mutat. Res. 2008; 659: 293-301.
  • 2. Wu M.M., Chiou H.Y., Ho I.C., et al.: Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ. Health Perspect. 2003; 109: 1011-1017.
  • 3. Styblo M., Del Razo L.M., Vega L., et al.: Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000; 74: 289-99.
  • 4. Rossman T.G.: Mechanism of arsenic carcinogenesis: an integrated approach. Mutat. Res. 2003: 533: 37-65.
  • 5. Niedzielski P., Siepak M., Siepak J.: Występowanie i zawartości arsenu, antymonu i selenu w wodach i innych elementach środowiska. Roczn. Ochr. Środ., 2000; 2: 317-341.
  • 6. Nordstrom DK. Public health. Worldwide occurrences of arsenic in ground water. Science. 2002; 296; 2143-5.
  • 7. Hosiner D., Lempiäinen H., Reiter W., et al.: Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response. Mol Biol Cell. 2009; 20: 1048-57.
  • 8. Mead M.N.: Arsenic: In search of an antidote to a global poison. Environ. Health Perspect. 2005; 113: 379-386.
  • 9. Dmoszyńska A., Górska M.: Trójtlenek arsenu, stary lek-nowe oblicze. Acta Haematologica Polonica 2004; 35: 5-14.
  • 10. Yamamoto S., Konishi Y., Matsuda T., et al.: Cancer induction by an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in F344/DuCrj rats after pretreatment with five carcinogens. Cancer Res. 1995; 55: 1271-6.
  • 11. Hughes M.F.: Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002; 133: 1-16.
  • 12. Tseng C.H.: The potential biological mechanisms of arsenicinduced diabetes mellitus. Toxicol. Appl. Pharmacol. 2004; 197: 67-83.
  • 13. Lantz R.C., Hals A.M. Role of oxidative stress in arsenic-induced toxicity. Drug Metab. Rev. 2006; 38: 791-804.
  • 14. Buttke T.M., Sandstrom P.A.: Oxidative stress as a mediator of apoptosis. Immunol. Today 1994; 15: 7-10.
  • 15. Liu S.X., Athar M., Lippai I., et al.: Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc. Natl. Acad. Sci. USA 2000; 98: 1643-1648.
  • 16. Reed J.C.: Mechanisms of apoptosis. Am. J. Pathol., 2000, 157, 1415-1430.
  • 17. Łabędzka K., Grzanka A., Izdebska M.: Mitochondrium a śmierć komórki. Postepy Hig. Med. Dosw. (online) 2006; 60: 439-446.
  • 18. Marchenko N.D., Zaika A., Petrenko O., et al.: p53 has a direct apoptogenic role at mitochondria. Mol. Cell 2003; 11: 577-590.
  • 19. Seol J.G., Park W.H., Kim E.S., et al.: Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem. Biophys. Res. Comm. 1999; 265: 400-404.
  • 20. Navas-Acien A., Silbergeld E.K., Streeter R.A., et al.: Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environ. Health Perspect. 2006; 114: 641-648.
  • 21. Macfarlane W.M., Smith S.B., James R.F., et al.: The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta-cells. J. Biol. Chem. 1997; 272: 20936-20944.
  • 22. Elrick L.J., Docherty K.: Phosphorylation-dependant nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1. Diabetes 2001; 50: 2244-2252.
  • 23. Wauson E.M., Langan A.S., Vorce R.L.: Sodium arsenite inhibits and reverse expression of adipogenic and fat cell-specific genes during in vitro adipogenesis. Toxicol. Sci. 2002; 65: 211-219.
  • 24. Bazuine M., Ouwens D.M., Gomes de Mesquita D.S., et al.: Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity. Eur. J. Biochem. 2003; 270: 3891-3903.
  • 25. Chen C.J., Hsueh Y.M., Lai M.S., et al.: Increased prevalence of hypertension and long-term arsenic exposure. Hypertension. 1995; 25: 53-60.
  • 26. Bodwell J.E., Kingsley L.A., Hamilton J.W.: Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain. Chem. Res. Toxicol. 2004; 17: 1064-1074.
  • 27. Lin T.H., Huang Y.L., Tseng W.C.: Arsenic and lipid peroxidation in patients with blackfoot disease. Bull. Environ. Contam. Toxicol. 1995; 54: 488-493.
  • 28. Ye B., Maret W., Vallee B.L.: Zinc metallothionein imported into liver mitochondria modulates respiration. Proc. Natl. Acad. Sci. U S A. 2001; 98: 2317-22.
  • 29. Woo S.H., Park I.C., Park M.J., et al.: Arsenic trioxide induces apoptosis through a reactive oxygen species dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int. J. Oncol. 2002; 21: 57-63.
  • 30. Wang G., Fowler B.A.: Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol. Appl. Pharmacol. 2008; 233: 92-99.
  • 31. Nordberg G.F., Jin T., Hong F., et al.: Biomarkers of cadmium and arsenic interactions. Toxicol. Appl. Pharmacol. 2005; 206: 191-197.
  • 32. Madden E.F., Fowler B.A.: Mechanisms of nephrotoxicity from metal combinations: a review. Drug Chem. Toxicol. 2000; 23: 1-12.
  • 33. Vasák M., Hasler D.W.: Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 2000; 4: 177–183.
  • 34. Sato M., Kondoh M.: Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J. Exp. Med. 2002; 196: 9-22.
  • 35. Milnerowicz H., Nowak P., Wochyński Z., et al.: Wpływ kadmu i wysiłku fizycznego na wybrane markery w tkankach szczura: metalotioneina. Nowa Medycyna nr 12/2000 – Medycyna w sporcie IV. Online: http://www.czytelniamedyczna.pl/nm_sp43.php (20 lutego 2009).
  • 36. Liu J., Liu Y., Habeebu S.M., et al.: Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 2000; 147: 157-166.
  • 37. Argonne National Laboratory, EVS: Mixtures of arsenic, cadmium, chromium, and lead. Human Health Fact Sheet, August 2005. Online: http://www.atsdr.cdc.gov/interactionprofiles/ (22 lutego 2009).
  • 38. Beckman L., Nordenson I.: Interaction between some common genotoxic agents. Int. J. Hum. Med. Genet. 1986; 36: 6-7.
  • 39. Zeng H., Uthus E., Combs Jr G.: Mechanistic aspects of the interaction between selenium and arsenic. J. Inorg. Biochem. 2005; 99: 1269-1274.

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4f089266-31d5-4f19-a48d-a26f232bb423
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.