ArticleOriginal scientific text

Title

Biological Behaviour of Chitosan Electrospun Nanofibrous Membranes After Different Neutralisation Methods

Authors * 1, 1, 2, 1, 3, 1,

*Corresponding author

Affiliations

  1. Biomedical Research Center, Sumy State University
  2. Faculty of Chemistry, Silesian University of Technology
  3. Institute of Atomic Physics and Spectroscopy, University of Latvia

Abstract

Chitosan electrospun nanofibres were synthesised in two different trifluoroacetic acid (TFA)/dichloromethane (DCM) solvent ratios and then neutralised in aqueous and ethanol sodium-based solutions (NaOH and Na2CO3) to produce insoluble materials with enhanced biological properties for regenerative and tissue engineering applications. Structural, electronic, and optical properties and the swelling capacity of the prepared nanofibre membrane were studied by scanning electron microscopy, Fourier-transform infrared spectroscopy, and photoluminescence. Cell viability (with the U2OS cell line) and antibacterial properties (against Staphylococcus aureus and Escherichia coli) assays were used to assess the biomedical potential of the neutralised chitosan nanofibrous membranes. A 7:3 TFA/DCM ratio allows for an elaborate nanofibrous membrane with a more uniform fibre size distribution. Neutralisation in aqueous NaOH only maintains a partial fibrous structure. At the same time, neutralisation in NaOH ethanol-water maintains the structure during 1 month of degradation in phosphate-buffered saline and distilled water. All membranes demonstrate high biocompatibility, but neutralisation in ethanol solutions affects cell proliferation on materials made with 9:1 TFA/DCM. The prepared nanofibrous mats could constrain the growth of both gram-positive and gram-negative microorganisms, but 7:3 TFA/DCM membranes inhibited bacterial growth more efficiently. Based on structural, degradation, and biological properties, 7:3 TFA/DCM chitosan nanofibrous membranes neutralised by 70% ethanol/30% aqueous NaOH exhibit potential for biomedical and tissue engineering applications.

Keywords

chitosan, nanofibres, electrospinning, neutralisation, antibacterial, biocompatibility

Bibliography

  1. Rasouli R, Barhoum A, Bechelany M, Dufresne A; (2019) Nanofibers for biomedical and healthcare applications, Macromol Biosci 19(2). DOI:10.1002/mabi.201800256
  2. Contreras-Cáceres R, Cabeza L, Perazzoli G, Díaz A, López-Romero JM, Melguizo C, Prados J; (2019) Electrospun nanofibers: recent applications in drug delivery and cancer therapy. Nanomaterials 9(4). DOI:10.3390/nano9040656
  3. Shalumon KT, Binulal NS., Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R; (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77(4), 863-869. DOI:10.1016/j.carbpol.2009.03.009
  4. Prabaharan M; (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72, 1313-1322. DOI:10.1016/j.ijbiomac.2014.10.052
  5. Du H, Liu M, Yang X, Zhai G; (2015) The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov Today 20(8), 1004-1011. DOI:10.1016/j.drudis.2015.03.002
  6. Sun K, Li ZH; (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5(4), 342-361. DOI:10.3144/expresspolymlett.2011.34
  7. Nayak R; (2017) Experimental: melt electrospinning. Springer, Cham, 41-54.
  8. Pasricha R, Sachdev D; (2017) Biological characterization of nanofiber composites. In: Ramalingam M, Ramakrishna S (eds), Nanofiber composites for biomedical applications. Woodhead Publishing, Cambridge, 157-196.
  9. Ding B, Wang X, Yu J (eds); (2018) Electrospinning: nanofabrication and applications. Elsevier, Amsterdam.
  10. Rasouli R, Barhoum A, Bechelany M, Dufresne A (2019) Nanofibers for biomedical and healthcare applications. Macromol Biosci 19(2). DOI:10.1002/mabi.201800256
  11. Ngo DH, Vo TS, Ngo DN, Kang KH, Je JY, Pham HND, Byun HG, Kim SK; (2015) Biological effects of chitosan and its derivatives, Food Hydrocolloids 51. DOI:10.1016/j.foodhyd.2015.05.023
  12. Abrigo M, McArthur SL, Kingshott P; (2014) Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol Biosci 14(6), 772-792. DOI:10.1002/mabi.201300561
  13. Deineka V, Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, Yusupova A, Tkachenko Y, Kalinkevich O, Zlatska A, Pogorielov M; (2021) Hemostatic and Tissue regeneration performance of novel electrospun chitosan-based materials. Biomedicines 9(6), 588. DOI:10.3390/biomedicines9060588
  14. Klossner RR, Queen HA, Coughlin AJ, Krause WE; (2008) Correlation of chitosan’s rheological properties and its ability to electrospin.Biomacromolecules 9(10), 2947- 2953. DOI:10.1021/bm800738u
  15. Deineka V, Sulaieva O, Pernakov N, Radwan-Pragłowska J, Janus L, Korniienko V, Husak Y, Yanovska A, Liubchak I, Yusupova A, Piątkowski M, Zlatska A, Pogorielov M; (2021) Hemostatic performance and biocompatibility of chitosanbased agents in experimental parenchymal bleeding. Mater Sci Eng C 120.DOI:10.1016/j.msec.2020.111740
  16. Sencadas V, Correia DM, Areias A, Botelho G, Fonseca AM, Neves IC, Gomez Ribelles JL, Lanceros Mendez S; (2012) Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym 87(2), 1295-1301. DOI:10.1016/j.carbpol.2011.09.017
  17. Jayakumar R, SV, Furuike T, and Tamur H; (2010) Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering. In: Eberli D (ed), Tissue Engineering, InTech Open, London. DOI:10.5772/8593
  18. Sencadas V, Correia DM, Ribeiro C, Moreira S, Botelho G, Gómez Ribelles JL, & Lanceros-Mendez S; (2012) Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polym Test 31(8), 1062-1069. DOI:10.1016/j.polymertesting.2012.07.010
  19. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV; (2005) In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26(36), 7616-7627. DOI:10.1016/j.biomaterials.2005.05.036
  20. Qing H, Qiang A, Yandao G, Xiufang Z; (2011) Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci Mater Med 22, 2791-2802.
  21. Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7(10), 2710-2714. DOI:10.1021/bm060286l
  22. Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A, Gervaso F; (2018) Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. J Healthc Eng 2018. DOI:10.1155/2018/3651480
  23. Phan DN, Lee H, Huang B, Mukai Y, Kim IS; (2019) Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26(3), 1781-1793. DOI:10.1007/s10570-018-2169-5.
  24. Ziel R, Haus A, Tulke A; (2008) Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J Memb Sci 323(2), 241-246. DOI:10.1016/j.memsci.2008.05.057
  25. Cremar L, Gutierrez J, Martinez J, Materon L, Gilkerson R, Xu F, Lozano K; (2018) Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomedicine J 5(1), 6-14. DOI:10.22038/nmj.2018.05.002
  26. Lin B, Luo Y, Teng Z, Zhang B, Zhou B, Wang Q; (2015) Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT 63(2), 1206-1213. DOI:10.1016/j.lwt.2015.04.049
  27. Zhang C, Yuan X, Wu L, Han Y, Sheng J; (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41(3), 423-432. DOI:10.1016/j.eurpolymj.2004.10.027
  28. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK; (2019) Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int J Biol Macromol 126, 569-577. DOI:10.1016/j.ijbiomac.2018.12.193
  29. Dostert KH, O’Brien CP, Liu W, Riedel W, Savara A, Tkatchenko A, Schauermann, S, Freund HJ; (2016) Adsorption of isophorone and trimethyl-cyclohexanone on Pd(111): a combination of infrared reflection absorption spectroscopy and density functional theory studies. Surf Sci 650, 149-160. DOI:10.1016/j.susc.2016.01.026
  30. Vörös-Horváth B, Živković P, Bánfai K, Bóvári-Biri J, Pongrácz J, Bálint G, Pál S, Széchenyi A; (2022) Preparation and characterization of ACE2 receptor inhibitorloaded chitosan hydrogels for nasal formulation to reduce the risk of COVID-19 viral infection. ACS Omega 7(4), 3240-3253. DOI:10.1021/acsomega.1c05149
  31. Geng Z, Zhang H, Xiong Q, Zhang Y, Zhao H, Wang g; (2015) A fluorescent chitosan hydrogel detection platform for the sensitive and selective determination of trace mercury(II) in water. J Mater Chem A 3(38), 19455-19460. DOI:10.1039/c5ta05610a
  32. Anas NAA, Fen YW, Omar NAS, Ramdzan NSM, Daniyal W. M. E. M. M., Saleviter S, Zainudin AA.; (2019) Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion. Opt Laser Technol 120. DOI:10.1016/j.optlastec.2019.105724
  33. Moeini A, Cimmino A, Dal Poggetto G, Di Biase M, Evidente A, Masi M, Lavermicocca P, Valerio F, Leone A, Santagata G, Malinconico M; (2018) Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydr Polym 195, 631-641. DOI:10.1016/j.carbpol.2018.05.005
  34. Mi FL; (2005) Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission. Biomacromolecules 6(2), 975-987. DOI:10.1021/bm049335p
  35. Abbaspour M, Makhmalzadeh BS, Rezaee B, Shoja S, Ahangari Z; (2015) Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J Microbiol 8(10), 24239. DOI:10.5812/jjm.24239
  36. Arkoun M, Daigle F, Heuzey MC, Ajji A; (2017) Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22(4), 585. DOI:10.3390/molecules22040585
  37. Raafat D, Sahl HG; (2009) Chitosan and its antimicrobial potential - a critical literature survey. Microb Biotechnol 2(2). 186-201. DOI:10.1111/j.1751-7915.2008.00080.x
  38. Zheng LY, Zhu JF; (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54(4), 527-530. DOI:10.1016/j.carbpol.2003.07.009
  39. Raafat D, Von Bargen K, Haas A, Sahl HG; (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74(12), 3764-3773. DOI:10.1128/AEM.00453-08
Pages:
135-153
Main language of publication
English
Published
2022
Exact and natural sciences