Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 27 | 116-134

Article title

EFFECT OF IONIC AND COVALENT CROSSLINKING OF HYDROGEL CHITOSAN BEADS ON THE ADSORPTION EFFICIENCY OF BASIC VIOLET 10 AND BASIC GREEN 4 DYES FROM AQUEOUS SOLUTIONS

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work investigated the adsorption efficiency of Basic Violet 10 (BV10) and Basic Green 4 (BG4) dyes on ionically and covalently crosslinked chitosan hydrogel beads. The tested ionic crosslinkers were sodium citrate, sodium tripolyphosphate, and sulphosuccinic acid, while the covalent crosslinkers were glutaraldehyde, epichlorohydrin, and trimethylolpropane triglycidyl ether. The scope of the work included investigation of the effect of pH on the adsorption efficiency of dyes and the maximum adsorption capacity of crosslinked chitosan adsorbents. The maximum adsorption capacity of the non-crosslinked chitosan adsorbent was 2.94 mg/g and 44.32 mg/g for BV10 and BG4, respectively. Ionic crosslinking, regardless of the type of crosslinking agent, reduced the adsorption ability of hydrogel chitosan adsorbents in relation to cationic dyes (Qmax = 1.84-2.49 mg/g for BV10; 37.21-38.90 mg/g for BG4). Covalent crosslinking of chitosan slightly increased its adsorption capacity only for BV10 (Qmax = 3.59-3.81 mg/g for BV10; 39.15-40.62 mg/g for BG4).

Year

Volume

27

Pages

116-134

Physical description

Contributors

  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn
  • 11-041 Olsztyn Poland

References

  • [1] Jóźwiak T, Filipkowska U, Szymczyk P, Zyśk M; (2017) Effect of the form and deacetylation degree of chitosan sorbents on sorption effectiveness of Reactive Black 5 from aqueous solutions. Int J Biol Macromol 95, 1169-1178. DOI:10.1016/j.ijbiomac.2016.11.007
  • [2] Jóźwiak T, Filipkowska U; (2020) Sorption kinetics and isotherm studies of a Reactive Black 5 dye on chitosan hydrogel beads modified with various ionic and covalent crosslinking agents. J Environ Chem Eng 8, 103564. DOI:10.1016/j.jece.2019.103564
  • [3] Liu M, Xie Z, Ye H, Li W, Shi W, Liu Y; (2021) Magnetic crosslinked chitosan for efficient removing anionic and cationic dyes from aqueous solution. Int J Biol Macromol 193, 337-346. DOI:10.1016/J.IJBIOMAC.2021.10.121
  • [4] Filipkowska U, Jóźwiak T, Szymczyk P, Kuczajowska-Zadrożna Małgorzata; (2017) The use of active carbon immobilised on chitosan beads for RB5 and BV10 dye removal from aqueous solutions. Prog Chem Appl Chitin its Deriv 22, 14-26. DOI:10.15259/PCACD.22.02
  • [5] Jóźwiak T, Filipkowska U, Szymczyk P, Rodziewicz J, Mielcarek A; (2017) Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React Funct Polym 114, 58-74. DOI:10.1016/j.reactfunctpolym.2017.03.007
  • [6] Mahaninia MH, Wilson LD; (2017) Phosphate uptake studies of crosslinked chitosan bead materials. J Colloid Interface Sci 485, 201-212. DOI:10.1016/J.JCIS.2016.09.031
  • [7] Silvestro I, Francolini I, Di Lisio V, Martinelli A, Pietrelli L, d’Abusco AS, Scoppio A, Piozzi A; (2020) Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials 13, 3577. DOI:10.3390/MA13163577
  • [8] Zaoui F, Choumane FZ, Hakem A; (2022) Malachite green dye and its removal from aqueous solution by clay-chitosan modified. Mater Today Proc 49, 1105-1111. DOI:10.1016/J.MATPR.2021.09.487
  • [9] Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S; (2021) Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water – a comprehensive review. Carbohydr Polym 273, 118604. DOI:10.1016/J.CARBPOL.2021.118604
  • [10] Huang C, Liao H, Ma X, Xiao M, Liu X, Gong S, Shu X, Zhou X; (2021) Adsorption performance of chitosan Schiff base towards anionic dyes: Electrostatic interaction effects. Chem Phys Lett 780, 138958. DOI:10.1016/J.CPLETT.2021.138958
  • [11] Shen K, Gondal MA; (2017) Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21, S120-S127. DOI:10.1016/J.JSCS.2013.11.005
  • [12] Wang S, Soudi M, Li L, Zhu ZH; (2006) Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. J Hazard Mater 133, 243-251. DOI:10.1016/J.JHAZMAT.2005.10.034
  • [13] Ju DJ, Byun IG, Park JJ, Lee CH, Ahn GH, Park TJ; (2008) Biosorption of a reactive dye (Rhodamine-B) from an aqueous solution using dried biomass of activated sludge. Bioresour Technol 99, 7971-7975. DOI:10.1016/J.BIORTECH.2008.03.061
  • [14] Jóźwiak T, Filipkowska U, Zajko P; (2019) Use of citrus fruit peels (grapefruit, mandarin, orange, and lemon) as sorbents for the removal of basic violet 10 and basic red 46 from aqueous solutions. Desalin Water Treat 163, 385-397. DOI:10.5004/DWT.2019.24453
  • [15] Parab H, Sudersanan M, Shenoy N, Pathare T, Vaze B; (2009) Use of agro-industrial wastes for removal of basic dyes from aqueous solutions. CLEAN Soil Air Water 37, 963-969. DOI:10.1002/CLEN.200900158
  • [16] Zhang J, Gondal MA, Wei W, Zhang T, Xu Q, Shen K; (2012) Preparation of room temperature ferromagnetic BiFeO3 and its application as an highly efficient magnetic separable adsorbent for removal of Rhodamine B from aqueous solution. J Alloys Compd 530, 107-110. DOI:10.1016/J.JALLCOM.2012.03.104
  • [17] Ho YS, Chiu WT, Wang CC; (2005) Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour Technol 96, 1285-1291. DOI:10.1016/J.BIORTECH.2004.10.021
  • [18] Sureshkumar M V., Namasivayam C; (2008) Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith. Colloids Surfaces A Physicochem Eng Asp 1-3, 277-283. DOI:10.1016/J.COLSURFA.2007.10.026
  • [19] Zamouche M, Hamdaoui O; (2012) Sorption of Rhodamine B by cedar cone: effect of pH and ionic strength. Energy Procedia. pp 1228-1239
  • [20] Lata H, Garg VK, Gupta RK; (2008) Adsorptive removal of basic dye by chemically activated Parthenium biomass: equilibrium and kinetic modeling. Desalination 219, 250-261. DOI:10.1016/J.DESAL.2007.05.018
  • [21] Wang Y, Mu Y, Zhao QB, Yu HQ; (2006) Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge. Sep Purif Technol 50, 1-7. DOI:10.1016/J.SEPPUR.2005.10.012
  • [22] Annadurai G, Juang RS, Lee DJ; (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92, 263-274. DOI:10.1016/S0304-3894(02)00017-1
  • [23] Bhattacharyya KG, SenGupta S, Sarma GK; (2014) Interactions of the dye, Rhodamine B with kaolinite and montmorillonite in water. Appl Clay Sci 99, 7-17. DOI:10.1016/J.CLAY.2014.07.012
  • [24] Santhi T, Prasad AL, Manonmani S; (2014) A comparative study of microwave and chemically treated Acacia nilotica leaf as an eco friendly adsorbent for the removal of rhodamine B dye from aqueous solution. Arab J Chem 7, 494-503. DOI:10.1016/J.ARABJC.2010.11.008
  • [25] Maurya NS, Mittal AK, Cornel P, Rother E; (2006) Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH. Bioresour Technol 97, 512-521. DOI:10.1016/J.BIORTECH.2005.02.045
  • [26] Yu JX, Li BH, Sun XM, Yuan J, Chi R an; (2009) Polymer modified biomass of baker’s yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. J Hazard Mater 168, 1147-1154. DOI:10.1016/J.JHAZMAT.2009.02.144
  • [27] Jóźwiak T, Filipkowska U, Struk-Sokołowska J, Bryszewski K, Trzciński K, Kuźma J, Ślimkowska M; (2021) The use of spent coffee grounds and spent green tea leaves for the removal of cationic dyes from aqueous solutions. Sci Rep 11, 9584. DOI:10.1038/s41598-021-89095-6
  • [28] Wang S, Zhu ZH; (2006) Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. J Hazard Mater 136, 946-952. DOI:10.1016/J.JHAZMAT.2006.01.038
  • [29] Panda GC, Das SK, Guha AK; (2009) Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J Hazard Mater 164, 374-379. DOI:10.1016/J.JHAZMAT.2008.08.015
  • [30] Bhatnagar A, Jain AK; (2005) A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J Colloid Interface Sci 281, 49-55. DOI:10.1016/J.JCIS.2004.08.076
  • [31] Hou MF, Ma CX, Zhang W De, Tang XY, Fan YN, Wan HF; (2011) Removal of rhodamine B using iron-pillared bentonite. J Hazard Mater 186, 1118-1123. DOI:10.1016/J.JHAZMAT.2010.11.110
  • [32] Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J; (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209-210, 193-198. DOI:10.1016/J.JHAZMAT.2012.01.011
  • [33] Namasivayam C, Dinesh Kumar M, Selvi K, Ashruffunissa Begum R, Vanathi T, Yamuna RT; (2001) ‘Waste’ coir pith—a potential biomass for the treatment of dyeing wastewaters. Biomass Bioenergy 21, 477-483. DOI:10.1016/S0961-9534(01)00052-6
  • [34] Tan IAW, Ahmad AL, Hameed BH; (2008) Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225, 13-28. DOI:10.1016/J.DESAL.2007.07.005
  • [35] Gad HMH, El-Sayed AA; (2009) Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. J Hazard Mater 168, 1070-1081. DOI:10.1016/J.JHAZMAT.2009.02.155
  • [36] Li L, Liu S, Zhu T; (2010) Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J Environ Sci 22, 1273-1280. DOI:10.1016/S1001- 0742(09)60250-3
  • [37] Guo Y, Zhao J, Zhang H, Yang S, Qi J, Wang Z, Xu H; (2005) Use of rice huskbased porous carbon for adsorption of Rhodamine B from aqueous solutions. Dye Pigment 66, 123-128. DOI:10.1016/J.DYEPIG.2004.09.014
  • [38] Wang L, Zhang J, Zhao R, Li C, Li Y, Zhang C; (2010) Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: Equilibrium, kinetic and thermodynamic studies. Desalination 254, 68-74. DOI:10.1016/j.desal.2009.12.012
  • [39] Mittal A; (2006) Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. J Hazard Mater 133, 196-202. DOI:10.1016/J.JHAZMAT.2005.10.017
  • [40] Tahir SS, Rauf N; (2006) Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 63, 1842-1848. DOI:10.1016/J.CHEMOSPHERE.2005.10.033
  • [41] Sun XF, Wang SG, Liu XW, Gong WX, Bao N, Gao BY, Zhang HY; (2008) Biosorption of Malachite Green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies. Bioresour Technol 99, 3475-3483. DOI:10.1016/J.BIORTECH.2007.07.055
  • [42] Bekçi Z, Seki Y, Cavas L; (2009) Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. J Hazard Mater 161, 1454-1460. DOI:10.1016/J.JHAZMAT.2008.04.125
  • [43] Altinişik A, Gür E, Seki Y; (2010) A natural sorbent, Luffa cylindrica for the removal of a model basic dye. J Hazard Mater 179, 658-664. DOI:10.1016/J.JHAZMAT.2010.03.053
  • [44] Jóźwiak T, Filipkowska U, Rodziewicz J, Mielcarek A, Owczarkowska D; (2013) Zastosowanie kompostu jako taniego sorbentu do usuwania barwników z roztworów wodnych. Rocz Ochr Środowiska 15, 2398-2411
  • [45] Aravindhan R, Rao JR, Nair BU; (2007) Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J Hazard Mater 142, 68-76. DOI:10.1016/J.JHAZMAT.2006.07.058
  • [46] Arellano-Cárdenas S, López-Cortez S, Cornejo-Mazón M, Mares-Gutiérrez JC; (2013) Study of malachite green adsorption by organically modified clay using a batch method. Appl Surf Sci 280, 74-78. DOI:10.1016/J.APSUSC.2013.04.097
  • [47] Chowdhury S, Saha P; (2010) Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies. Chem Eng J 164, 168-177. DOI:10.1016/J.CEJ.2010.08.050
  • [48] Kumar KV; (2007) Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dye Pigment 74, 595-597. DOI:10.1016/J.DYEPIG.2006.03.026
  • [49] Chowdhury S, Chakraborty S, Saha P; (2011) Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids Surfaces B Biointerfaces 84, 520-527. DOI:10.1016/J.COLSURFB.2011.02.009
  • [50] Baek MH, Ijagbemi CO, O SJ, Kim DS; (2010) Removal of Malachite Green from aqueous solution using degreased coffee bean. J Hazard Mater 176, 820-828. DOI:10.1016/J.JHAZMAT.2009.11.110
  • [51] Hameed BH, El-Khaiary MI; (2008) Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. J Hazard Mater 159, 574-579. DOI:10.1016/J.JHAZMAT.2008.02.054
  • [52] Gupta VK, Srivastava SK, Mohan D; (1997) Equilibrium Uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Ind Eng Chem Res 36, 2207-2218. DOI:10.1021/IE960442C
  • [53] Garg VK, Gupta R, Yadav AB, Kumar R; (2003) Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour Technol 89, 121-124. DOI:10.1016/S0960-8524(03)00058-0
  • [54] Saha P, Chowdhury S, Gupta S, Kumar I; (2010) Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem Eng J 165, 874-882. DOI:10.1016/J.CEJ.2010.10.048
  • [55] Jalil AA, Triwahyono S, Yaakob MR, Azmi ZZA, Sapawe N, Kamarudin NHN, Setiabudi HD, Jaafar NF, Sidik SM, Adam SH, Hameed BH; (2012) Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green. Bioresour Technol 120, 218-224. DOI:10.1016/J.BIORTECH.2012.06.066
  • [56] Hamdaoui O, Saoudi F, Chiha M, Naffrechoux E; (2008) Sorption of malachite green by a novel sorbent, dead leaves of plane tree: Equilibrium and kinetic modeling. Chem Eng J 143, 73-84. DOI:10.1016/J.CEJ.2007.12.018
  • [57] Gong R, Feng M, Zhao J, Cai W, Liu L; (2009) Functionalization of sawdust with monosodium glutamate for enhancing its malachite green removal capacity. Bioresour Technol 100, 975-978. DOI:10.1016/J.BIORTECH.2008.06.031
  • [58] Rahman IA, Saad B, Shaidan S, Sya Rizal ES; (2005) Adsorption characteristics of Malachite Green on activated carbon derived from rice husks produced by chemical-thermal process. Bioresour Technol 96, 1578-1583. DOI:10.1016/J.BIORTECH.2004.12.015
  • [59] Shimei X, Jingli W, Ronglan W, Jide W; (2006) Effect of degree of substitution on adsorption behavior of Basic Green 4 by highly crosslinked amphoteric starch with quaternary ammonium and carboxyl groups. Carbohydr Polym 66, 55-59. DOI:10.1016/J.CARBPOL.2006.02.023
  • [60] Başar CA; (2006) Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J Hazard Mater 135, 232-241. DOI:10.1016/J.JHAZMAT.2005.11.055
  • [61] Vasanth Kumar K, Sivanesan S, Ramamurthi V; (2005) Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling. Process Biochem 40, 2865-2872. DOI:10.1016/J.PROCBIO.2005.01.007
  • [62] Porkodi K, Vasanth Kumar K; (2007) Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems. J Hazard Mater 143, 311-327. DOI:10.1016/j.jhazmat.2006.09.029
  • [63] Hameed BH, El-Khaiary MI; (2008) Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J Hazard Mater 153, 701-708. DOI:10.1016/J.JHAZMAT.2007.09.019
  • [64] Mall ID, Srivastava VC, Agarwal NK, Mishra IM; (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbonkinetic study and equilibrium isotherm analyses. Colloids Surfaces A Physicochem Eng Asp 1-3, 17-28. DOI:10.1016/J.COLSURFA.2005.03.027
  • [65] Bhattacharyya KG, Sarma A; (2003) Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dye Pigment 57, 211-222. DOI:10.1016/S0143-7208(03)00009-3
  • [66] Gong R, Feng M, Zhao J, Cai W, Liu L; (2009) Functionalization of sawdust with monosodium glutamate for enhancing its malachite green removal capacity. Bioresour Technol 100, 975-978. DOI:10.1016/J.BIORTECH.2008.06.031
  • [67] Malik R, Ramteke DS, Wate SR; (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag 27, 1129-1138. DOI:10.1016/J.WASMAN.2006.06.009
  • [68] Akar E, Altinişik A, Seki Y; (2013) Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution. Ecol Eng 52, 19-27. DOI:10.1016/J.ECOLENG.2012.12.032
  • [69] Hameed BH, El-Khaiary MI; (2008) Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. J Hazard Mater 157, 344-351. DOI:10.1016/J.JHAZMAT.2007.12.105
  • [70] Nuithitikul K, Srikhun S, Hirunpraditkoon S; (2010) Kinetics and equilibrium adsorption of Basic Green 4 dye on activated carbon derived from durian peel: Effects of pyrolysis and post-treatment conditions. J Taiwan Inst Chem Eng 41, 591-598. DOI:10.1016/J.JTICE.2010.01.007
  • [71] Ahmad MA, Alrozi R; (2011) Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chem Eng J 171, 510-516. DOI:10.1016/J.CEJ.2011.04.018

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-2e300af0-f4a0-4d35-87d6-e36b2186b2a4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.