Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 27 | 5-34

Article title

SYNTHESIS AND APPLICATION OF CHITOSAN HYDROXYAPATITE: A REVIEW

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this review, the research devoted to synthesising chitosan apatites, their biologically active properties, and their application in medical practice is analysed. The data are from articles published between 2001 and 2022 on the formation of calcium- and phosphorus-containing chitosan composites and the mechanism of their interaction

Contributors

  • Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences
  • Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences
  • Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences

References

  • [1] Dhanwal DK, Dennison EM, Harvey NC, Cooper C; (2011) Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop 45(1), 15-22. DOI:10.4103/0019-5413.73656
  • [2] Tikhonovich L; (2010) Osteoporosis: killer no 4. Filantrop. Electronic mag. ab.charity. https://philanthropy.ru/environment/2010/10/05/3708/
  • [3] Thomas MS, Koshy RR, Mary SK, Thomas S, Pothan LA; (2019) Starch, chitin and chitosan based composites and nanocomposites. Springer, Cham, 65. DOI:10.1007/978-3-030-03158-9
  • [4] Varlamov VP, Il’ina AV, Shagdarova BTs, Lunkov AP, Mysyakina IS; (2020) Chitin/chitosan and its derivatives: fundamental problems and practical approaches. Biochem (Moscow), 85 (S1), 154-176. DOI:10.1134/S0006297920140084
  • [5] Rashid S, Shen, Chensi YJ, Liu J, Li J; (2017) Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution. J Environ Sci 66, 301-309. DOI:10.1016/j.jes.2017.04.033
  • [6] Piotrowska-Kirschling A., Brzeska J; (2020) Review of chitosan nanomaterials for metal cation adsorption. Prog Chem Appl Chitin Deriv 25, 51-62. DOI:10.15259/PCACD.25.004
  • [7] Szczepański R, Gadomska L, Michalak M, Bakun P, Pawlak K, Goslinski T, Ziegler-Borowska M, Czarczynska-Goslinska B; (2020) Chitosan-derivatives in combinations with selected porphyrinoids as novel hybrid materials for medicine and pharmacy. Prog Chem Appl Chitin Deriv 25, 63-78. DOI:10.15259/PCACD.25.005
  • [8] Randy ChFCh, Tzi BN, Jack HW, Wai YCh; (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13, 5156-5186. DOI:10.3390/md13085156
  • [9] Wieczorek AS, Hetz SA, Kolb S; (2014) Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences 11, 3339-3352. DOI:10.5194/bg-11-3339-2014
  • [10] Il’ina AV, Shagdarova BTs, Lunkov AP, Varlamov VP; (2020) Тhe formation of hydrogels based on chitosan and its water-soluble derivatives. Prog Chem Appl Chitin Deriv 25, 5-15. DOI:10.15259/PCACD.25.001
  • [11] Arca HC, Senel S; (2008) Chitosan based systems for tissue engineering part 1: hard tissues. FABAD J Pharm Sci 33(1), 35-49. http://dergi.fabad.org.tr/pdf/volum33/issue1/035-050.pdf
  • [12] Martin RV, Brenda VR, Rodrigo RZ, Daniel ASK, Luis FQO; (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res Int 2015:821279 DOI:10.1155/2015/821279
  • [13] Drewnowska O, Turek B, Carstanjen B, Gajewski Z; (2013) Chitosan - a promising biomaterial in veterinary medicine. Polish J of Vet Sci 16(4), 843-848. DOI:10.2478/pjvs-2013-0119
  • [14] Arca HG, Senel S; (2008) Chitosan based systems for tissue engineering part II: soft tissues. FABAD J Pharm Sci 33, 211-216. http://dergi.fabad.org.tr/pdf/volum33/issue4/211-226.pdf
  • [15] Islam M, Shahruzzaman Md, Biswas Sh, Sakiba N, Rashidab TU; (2020) Chitosan based bioactive materials in tissue engineering applications-a review. Bioac Mat 5(1), 164-183. DOI:10.1016/j.bioactmat.2020.01.012
  • [16] Kucharska M, Ciechańska D, Niekraszewicz A, Wiśniewska–Wrona M, Kardas I; (2010) Potential use of chitosan-based material in medicine. Prog Chem Appl Chitin Deriv 15, 169-176. http://www.ptchit.lodz.pl/pliki/PTChit_(6jc08cdm27pqxjjd).pdf
  • [17] Hengameh H, Mehdi B; (2009) Applications of biopolymers I: chitosan. Monatsh Chem 140(12), 1403-1420. DOI:10.1007/s00706-009-0197-4
  • [18] Dorozhkin SV; (2009) Nanodimensional and Nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials 2, 1975-2045. DOI:10.3390/ma2041975
  • [19] Rasskazova LA; (2015) Technology of obtaining magnesium- and silicon-modified hydroxyapatites and bioresorbable composite materials using lactic acid polymers. Diss. Tomsk, 27. (in Russian)
  • [20] Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A; (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia 9(8), 7591–7621. DOI:10.1016/j.actbio.2013.04.012
  • [21] Pai Sh, Kini MS, Selvaraj R, Pugazhendhi A; (2020) A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater. J Water Process Eng 38, 101574. DOI:10.1016/j.jwpe.2020.101574
  • [22] Qi ML, He K, Huang ZN, Shahbazian-Yassar R, Xiao GY, Lu YP, Shokuhfar T; (2017) Hydroxyapatite fibers: a review of synthesis methods. JOM 69, 1354-1360. DOI:10.1007/s11837-017-2427-2
  • [23] Stepuk AA, Veresov AG, Putlyaev VI, Tretyakov YuD; (2007) The influence of NO3−, CH3COO− and Cl− ions on the morphology of calcium hydroxyapatite crystals. Dokl Phys Chem 412(1), 11-14. DOI:10.1134/S0012501607010046
  • [24] Mohd Pu’ad NAS, Abdul Haq RH, Mohd Noh H, Abdullah HZ, Idris MI, Lee TC; (2020) Synthesis method of hydroxyapatite: A review. Mate Today Proc 29(1), 233-239. DOI:10.1016/j.matpr.2020.05.536
  • [25] Tsuber VK, Lesnikovich LA, Kulak AI, Trofimova IV, Petrov PT, Trukhacheva TV, Kovalenko YuD, Krasil’nikova VL; (2006) Synthesis, identification and determination of impurities in bioactive hydroxyapatite. Pharm Chem J 40(8), 455-458. DOI:10.1007/s11094-006-0151-2
  • [26] Safronova TV, Kuznetsov AV, Korneychuk SA, Putlyaev VI, Shekhirev MA; (2009) Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO4 3−]=1 for bioresorbable ceramics. Cent Eur J Chem 7(2), 184-191. DOI:10.2478/s11532-009-0016-0
  • [27] Kulyashova KS, Sharkeev YP; (2011) Obtaining synthetic hydroxyapatite for the formation of biocoatings on medical implants. Chem Sustain Dev 19, 447-453. https://www.sibran.ru/upload/iblock/2ba/2bab70211f6eaa43b9697acbd5ccef82.pdf
  • [28] Dorozhkin SV; (2012) Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int Jour of Mat and Chem 2(1), 19-46. DOI:10.5923/j.ijmc.20120201.04
  • [29] Dorozhkin SV; (2012) Dissolution mechanism of calcium apatites in acids: a review of literature. World J Methodol 26, 2(1), 1-17. DOI:10.5662/wjm.v2.i1.1
  • [30] Meyer U, Joos U, Wiesmann HP; (2004) Biological and biophysical principles in extracorporal bone tissue engineering part III. Int J Oral Maxillofac Surg. 33, 635-641. DOI:10.1016/j.ijom.2004.04.005
  • [31] Mohamed KR, Beherei HH, El-Rashidy ZM; (2014) In vitro study of nanohydroxyapatite/chitosan-gelatin composites for bio-applications. J Adv Res 5(2), 201-208. DOI:10.1016/j.jare.2013.02.004
  • [32] Ishikawa K, Hayashi K; (2021) Carbonate apatite artificial bone. Sci Technol Adv Mater 22(1), 683-694. DOI:10.1080/14686996.2021.1947120
  • [33] Liao S, Wanga W, Uo M; (2005) A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 26(36), 7564-7571. DOI:10.1016/j.biomaterials.2005.05.050.
  • [34] Tadjoedin ES, de Lange GL, Bronckers AL, Lyaruu DM, Burger EH; (2003) Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J Clin Periodontol 30(3), 261-270. DOI:10.1034/j.1600-051x.2003.01099.x.
  • [35] Madupalli H, Pavan B, Tecklenburg MMJ; (2017) Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem 255, 27-35. DOI:10.1016/j.jssc.2017.07.025
  • [36] Gurin AN; (2009) Comparative assessment of the effect of various osteoplastic materials based on calcium phosphates on the healing of bone defects. Diss. Moscow, 30-33.
  • [37] Ishikawa K; (2019) Carbonate apatite bone replacement: learn from the bone. J Ceram Soc Jpn 127(9), 595-601. DOI:10.2109/jcersj2.19042
  • [38] Safronova TV; (2021) Inorganic materials for regenerative medicine. Inorganic Mater 57(5), 467-499. DOI:10.31857/S0002337X21050067
  • [39] Putlyaev VI, Safronova TV; (2006) A new generation of calcium phosphate biomaterials: the role of phase and chemical compositions. Glass Ceram 63(3), 99-102. DOI:10.1007/s10717-006-0049-1
  • [40] Al-Zubaydi AAM; (2014) Investigation of the physicochemical properties of metalsubstituted nanocrystalline calcium-deficient hydroxyapatite. Diss. Voronej, 95-96.
  • [41] Ivanova AA, Surmeneva MA, Tyurin AI, Pirozhkova TS, Shuvarin IA, Prymak O, Epple M, Chaikina MV, Surmenev RA; (2016) Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films. Appl Surf Sci 360, 929-935. DOI:10.1016/j.apsusc.2015.11.087
  • [42] Ramesh N, Moratti SC, Dias GJ; (2017) Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends. J Biomed Mater Res Part B Appl Biomater 106(5), 2046-2057. DOI:10.1002/jbm.b.33950
  • [43] Konovalova MV, Kurek DV, Litvinets SG, Martinson EA, Varlamov VP; (2016) Preparation and characterisation of cryogels based on pectin and chitosan. Prog Chem Appl Chitin Deriv 21, 114-121. DOI:10.15259/PCACD.21.12
  • [44] Anamarija R, Patricia R, Gloria GF, Marica I, Hrvoje I; (2016) In Situ hydroxyapatite content affects the cell differentiation on porous chitosan/hydroxyapatite scaffolds. Ann Biomed Eng 44(4), 1107-1119. DOI:10.1007/s10439-015-1418-0
  • [45] Zakharov NA, Sentsov Myu, Kiselev MR, Klyuev VA, Kalinnikov VT; (2016) The influence of methylcellulose (MC) on solubility of calcium hydroxyapatite (HA) crystals in HA/MC nanocomposites. Prot Met Phys Chem Surf 52(1), 89-99. DOI:10.1134/S2070205115060246
  • [46] Murugan R, Ramakrishna S; (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25, 3829-3835. DOI:10.1016/j.biomaterials.2003.10.016
  • [47] Komlev V.S; (2011) Formation of microstructure and properties of calcium phosphate ceramics for bone tissue engineering. Diss. Moscow, 21-22.
  • [48] Yanovskaya AA, Kuznetsov VN, Stanislavov AS, Husak Е, Pogorielov М, Starikov V, Bolshanina S, Danilchenko S; (2015) Structured materials based on hydroxyapatite and gelatin for biomedical applications. Chem Phys Tech Surf 6(4), 535-544. DOI:10.15407/hftp06.04.535
  • [49] Jahan F, Mathad RD; (2016) Mechanical studies on chitosan/PVA blend with calcium chloride as ionic crosslinker. Int J Adv Eng Technol 4(4-2), 31-34. http://www.iraj.in/journal/journal_file/journal_pdf/6-329-148575522031-34.pdf
  • [50] Jahan F, Mathad RD; (2016) Effect of Ionic Crosslinking on Thermal Stability of Chitosan-Polyvinyl Alcohol Polymer Blend. Int J Innov Res Technol Sci Eng 5(1), 1077-1083. DOI:10.15680/IJIRSET.2015.0501061
  • [51] Pineda CSA, Bernal LCC, Tovar AFA, Andres BB, Ramiro SPH, Lorena NMD, Milena MFD, Viviana GBS, Catalina VBA, Lukas M; (2018) Novel biopolimeric system for bone tissue engineering: crosslinked and plasticized chitosan/poly vinyl alcohol/hydroxiapatite scaffolds. IX Inter Sem Biomed Eng. DOI:10.1109/SIB.2018.8467728
  • [52] Azin A, Koohi AD, Padekan B; (2022) Chitosan-collagen/hydroxyapatite and tripolyphosphate nanocomposite: characterization and application for copper removal from aqueous solution. Polym Bull. DOI:10.1007/s00289-021-03998-y
  • [53] Wahl DA, Czernuszka JT; (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11, 43-56. DOI:10.22203/eCM.v011a06
  • [54] Haiguang Z, Lie М, Changyou G, Jiacong Sh; (2008) Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds. Polym Adv Technol 19, 1590-1596. DOI:10.1002/pat.1174
  • [55] Zugravu MV, Smith RA, Reves BT, Jennings JA, Cooper JO, Haggard WO, Bumgardner JD; (2012) Physical properties and in vitro evaluation of collagenchitosan-calcium phosphate microparticle-based scaffolds for bone tissue regeneration. J Biomater Appl 28(4), 566-579. DOI:10.1177/0885328212465662
  • [56] Soares DG, Rosseto HL, Basso FG, Scheffel DS, Hebling J, Costa CAS; (2016) Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells. Braz Oral Res 30(1), e54. DOI:10.1590/1807-3107BOR-2016.vol30.0054
  • [57] Krut’ko VK, Kulak AI, Musskaya ON; (2015) Electrochemical deposition of apatite-polymer coatings on titanium surface. Physicochemical aspects of the study of clusters, nanostructures and nanomaterials. 7, 322-328. https://www.researchgate. net/publication/286861753
  • [58] Romanov DP, Khripunov AK, Baklagina YuG, Severin AV, Lukasheva NV, Tolmachev DA, Lavrent’ev VK, Tkachenko AA, Arkharova NA, Klechkovskaya VV; (2014) Nanotextures of composites. formed by the interaction of hydroxyapatite and cellulose Gluconacetobacter xylinus. Glass Phys Chem 40(3), 367-374. DOI:10.1134/S1087659614030183
  • [59] Arkharova NA; (2017) Structure of composites based on cellulose Gluconacetobacter xylinus and nanoparticles of various nature. Diss. Moscow, 40-45.
  • [60] Khayrullin AR, Severin AV, Khripunov AK, Tkachenko AA, Pautov VD; (2013) Composites based on Gluconacetobacter xylinus bacterial cellulose and calcium phosphates and their dielectric properties. Russ J Appl Chem 86(8), 1298-1304. DOI:10.1134/S1070427213080247
  • [61] Zhang J, Iwasa M, Jiang DL; (2006) Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Adv Sci Technol 53, 32-37. DOI:10.4028/www.scientific.net/ast.53.32
  • [62] Mohammad Sh, Sumbul M, Reshma D, Ahmar R, Mohammad O; (2018) Synthesis. in vitro characterization and screening of nano-hydroxyapatite/chitosan / Euryale ferox nanoensemble - a unique approach for bone tissue engineering. New J Chem 42, 363-371. DOI:10.1039/C7NJ02953E
  • [63] Sun W, Gregory DA, Tomeh MA, Zhao X; (2021) Silk fibroin as a functional biomaterial for tissue engineering. Int J Mol Sci 22(3), 1499. DOI:10.3390/ijms22031499
  • [64] Venkatesan J, Kim SK; (2010) Chitosan composites for bone tissue engineering - an overview. Marine Drugs 8, 2252-2266. DOI:10.3390/md8082252
  • [65] Wang X, Tan Y, Zhang B, Gu Z, Li X; (2009) Synthesis and evaluation of collagenchitosan-hydroxyapatite nanocomposites for bone grafting. J Biomed Mater Res Part A 89, 1079-1087. DOI:10.1002/jbm.a.32087
  • [66] Hassanzadeh A, Ashrafihelan J, Salehi R, Rahbarghazi R, Firouzamandi M, Ahmadi M, Aghazadeh M; (2021) Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application. Artif Cells Nanomed Biotechnol 49(1), 136-146. DOI:10.1080/21691401.2021.1877153
  • [67] Teng S, Lee E, Yoon B, Shin D, Kim H, Oh J; (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res Part A 88, 569-580. DOI:10.1002/jbm.a.31897
  • [68] Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT; (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314-4322. DOI:10.1016/j.biomaterials. 2008.07.038
  • [69] Fauziyah M, Salsabila T, Setyawan H, Widiyastuti W; (2021) Synthesis of chitosan/hydroxyapatite nanofibers as a wound dressing via electrospinning method. J Phys Conf Ser 1726, 012019. DOI:10.1088/1742-6596/1726/1/012019
  • [70] Kuo Y, Lin C; (2006) Effect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytes. Biotechnol Bioeng 95, 132-144. https://DOI.org/10.1002/bit.21007
  • [71] Pena J, Izquierdo-Barba I, García M, Vallet-Regí M; (2016) Room temperature synthesis of chitosan/apatite powders and coatings. J Eur Ceram Soc 26, 3631-3638. DOI:10.1016/j.jeurceramsoc.2005.12.028
  • [72] Hu Q, Li B, Wang M, Shen J; (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25, 779-785. DOI:10.1016 / s0142-9612 (03) 00582-9
  • [73] Lakrat M, Fadlaoui S, Aaddouz M, El Asri O, Melhaoui M, Mejdoubi ElM; (2020) Synthesis and characterization of composites based on hydroxyapatite nanoparticles and chitosan extracted from shells. Prog Chem Appl Chitin Deriv 25, 32-142. DOI:10.15259/PCACD.25.010
  • [74] Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W; (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C 29, 29-35. DOI:10.1016 / j.msec.2008.05.008
  • [75] Murugesan S, Scheibel T; (2021) Chitosan based nanocomposites for medical applications. J Polym Sci 59(15), 1610-1642. DOI:10.1002/pol.20210251
  • [76] Madhumathi K, Shalumon K, Rani V, Tamura H, Furuike T, Selvamurugan N, Nair S, Jayakumar R; (2009) Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 45, 12-15. DOI:10.1016/ j.ijbiomac.2009.03.011
  • [77] Manjubala I, Ponomarev I, Wilke I, Jandt K; (2008) Growth of osteoblast like cells on biomimetic apatite-coated chitosan scaffolds. J Biomed Mater Res Part A Appl Biomater 8, 7-16. DOI:10.1002/jbm.b.30838
  • [78] Thein-Han W, Misra R; (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5, 1182-1197. DOI:10.1016/j.actbio.2008.11.025
  • [79] Oliveira JM, Rodrigues M, Silva S, Malafaya P, Gomes M, Viegas C, Dias I, Azevedo J, Mano J, Reis R; (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27, 6123-6137. DOI:10.1016/j.biomaterials.2006.07.034
  • [80] Liuyun J, Yubao L, Chengdong X; (2009) A novel composite membrane of chitosancarboxymethyl cellulose polyelectrolyte complex membrane filled with nanohydroxyapatite I. Preparation and properties. J Mater Sci Mater Med 20, 1645-1652. DOI:10.1007/s10856-009-3720-6
  • [81] Ding S; (2007) Biodegradation behavior of chitosan/calcium phosphate composites. Journal Non-Cryst. Solids 353, 2367-2373. DOI:10.1016/j.jnoncrysol.2007.04.020
  • [82] Li Q, Chen Z, Darvell B, Zeng Q, Li G, Ou G, Wu M; (2006) Biomimetic synthesis of the composites of hydroxyapatite and chitosan-phosphorylated chitosan polyelectrolyte complex. Mater Lett 60, 3533-3536. DOI:10.1016/j.matlet.2006.03.046
  • [83] Verma D, Katti K, Katti D; (2008) Effect of Biopolymers on structure of hydroxyapatite and interfacial interactions in biomimetically synthesized hydroxyapatite/biopolymer nanocomposites. Ann Biomed Eng 36, 1024-1032. DOI:10.1007/s10439-008-9483-2 ·
  • [84] Davidenko N, Carrodeguas R, Peniche C, Solís Y, Cameron R; (2010) Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomater 6, 466-476. DOI:10.1016/j.actbio.2009.07.029
  • [85] Zhang Y, Zhang M; (2004) Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J Mater Sci Mater Med 15, 255-260. DOI:10.1023/B:JMSM.0000015485.94665.25
  • [86] Ehrlich H, Krajewska B, Hanke T, Born R, Heinemann S, Knieb C, Worch H; (2006) Chitosan membrane as a template for hydroxyapatite crystal growth in a model dual membrane diffusion system. J Membr Sci 273, 124-128. DOI:10.1016/j.memsci.2005.11.050
  • [87] Xiong Lu; Yang Leng; Qiyi Zhang (2008). Electrochemical deposition of octacalcium phosphate micro-fiber/chitosan composite coatings on titanium substrates. Surf Coat Technol 202(13), 3142-3147. DOI:10.1016/j.surfcoat.2007.11.024
  • [88] Pang X, Zhitomirsky I; (2005) Electrodeposition of composite hydroxyapatitechitosan films. Mater Chem Phys 94, 245-251. DOI:10.1016/j.matchemphys.2005.04.040
  • [89] Huang Z, Dong Y, Chu C, Lin P; (2008) Electrochemistry assisted reacting deposition of hydroxyapatite in porous chitosan scaffolds. Mater Lett 62, 3376-3378. DOI:10.1016/j.matlet.2008.03.045
  • [90] Shi YY, Li M, Liu Q, Jia ZJ, Xu XC, Cheng Y, Zheng YF, (2016) Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci Mater Med 27, 48. DOI:10.1007/s10856-015-5634-9
  • [91] Pang X, Zhitomirsky I; (2007) Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater Charact 58, 339-348. DOI:10.1016/j.matchar. 2006.05.011
  • [92] Yuan H, Chen N, Lu X, Zheng B; (2008) Experimental study of natural hydroxyapatite/chitosan composite on reconstructing bone defects. J Nanjing Med Univ 22, 372-375. DOI:10.1016 / S1007-4376(09)60009-5
  • [93] Balouiri M, Sadiki M, Ibnsouda SK; Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6, 71-79. DOI:10.1016/j.jpha.2015.11.005
  • [94] Phakamat T, Pasutha T, Wanpen T; (2008) Chitosan/calcium phosphate composites scaffolds prepared by membrane diffusion process. J Met Mater Miner 18(2), 67-71. http://www.jmmm.material.chula.ac.th/index.php/jmmm/article/download/313/356
  • [95] Maria R, Haberko K, Danuta C, Antoni N, Magdalena K; (2008) Hydroxyapatite - chitosan biocomposites. Polish Chitin Society 13, 89-94. https://www.yumpu.com/en/document/view/36347265/hydroxyapatite-chitosan-biocomposites-ptchit
  • [96] Danilchenko SN, Kalinkevich OV, Pogorelov MV, Kalinkevich AN; (2009) Chitosan-hydroxyapatite composite biomaterials made by a one step coprecipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9(3), 119-126. DOI:10.4024/22DA09A.jbpc.09.03
  • [97] Teng ShH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS; (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res 88A(3), 569-580. DOI:10.1002/jbm.a.31897
  • [98] Starikov VV, Rudchenko SO; (2010) Optimization of the properties of a composite based on hydroxyapatite and chitosan by varying its composition and heat treatment modes. Vestnik KhNU Ser Phys 915(14), 35-39. http://physics.karazin.ua/doc/v_14_2010/10SVVSRT.pdf
  • [99] Ramli RA, Adnan R, Abu Bakar M, Masudi S; (2011) Synthesis and characterisation of pure nanoporous hydroxyapatite. J Phys Sci 22(1), 25-37. http://web.usm.my/jps/22-1-11/22.1.2.pdf
  • [100] Pogorielov MV, Gusak YeV, Babich IM, Kalinkevich OV, Kalinkevich AN, Somokhvalov II, Danilchenko SN, Skliar AM; (2014) Trake elements sorption by the chitosan-based materials. J Clin Exp Med Res 2(1), 88-99. https://oaji.net/articles/2014/785-1401266265.pdf
  • [101] Sukhodub LF, Sukhodub LB, Chorna IV; (2016) Chitosan-apatite composites: synthesis and properties. Biopolym Cell 32(2), 83-97. DOI:10.7124/bc.000910
  • [102] Okada T, Nobunaga Y, Konishi T, Yoshioka T, Hayakawa S, Lopes MA, Miyazaki T, Shirosaki Y; (2017) Preparation of chitosan-hydroxyapatite composite mono-fiber using coagulation method and their mechanical properties. Carbohydr Polym DOI:10.1016/j.carbpol.2017.07.072
  • [103] Tomasz S, Agnieszka KR, Jakub Z, Karolina S, Dominik P, Marcin W, Hermann E, Teofil J; (2015) Synthesis and characterization of hydroxyapatite/chitosan composites. Physicochem Probl Miner Process 51(2), 575−585. DOI:10.5277/ppmp150217
  • [104] Pighinelli L, Kucharska M; (2013) Properties of microcrystalline chitosan-calcium phosphate complex composite. J Biomater Nanobiotechnol. 4, 20-29. DOI:10.4236/jbnb.2013.44A003
  • [105] Li XY, Nan KH, Shi Sh, Chen H; (2012) Preparation and characterization of nanohydroxyapatite/chitosan crosslinking composite membrane Intended for tissue engineering. Int J Biol Macromol 50(1), 43-49. DOI:10.1016/j.ijbiomac.2011.09.021
  • [106] Ruphuy G, Weide T, Lopes JCB, Dias MM, Barreiro MF; (2018) Preparation of nano-hydroxyapatite/chitosan aqueous dispersions: from lab scale to continuous production using an innovative static mixer. Carbohydr Polym 202, 20-28. DOI:10.1016/j.carbpol.2018.08.123
  • [107] Suetenkov DYe, Terentyuk GS, Karagaychev AL, Lyasnikova AV; (2011) Immunological effects used of orthodontic microimplants with modified coat: an animal study. Saratov J Med Sci Res 7(1), 262-266. https://ssmj.ru/system/files/2011_01_pril_262-266.pdf
  • [108] Emad El-M, Abu-Elsaad NI, Abeer MEl-K, Manar AI; (2018) Improvement of physicochemical properties of dextran-chitosan composite scaffolds by addition of nano-hydroxyapatite. Sci Rep 8, 12180. DOI:10.1038/s41598-018-30720-2
  • [109] Shaikhaliev AI, Krasnov MS, Yamskova OV, Sventskaya NV; (2016) Influence of the chemical nature of implantation materials on the course of regenerative processes in the bone bed. Biophysics 61(4), 813-822. (in Russian)
  • [110] Jucélia LDM, Fernanda FSB, Albaniza AT, Matheus AM, de Medeiros LB, Vinícius LFM, Suédina Maria LS; (2019) The impact of the ionic cross-linking mode on the physical and in vitro dexamethasone release properties of chitosan/hydroxyapatite beads. Molecules 24, 4510. DOI:10.3390/molecules24244510
  • [111] Sharifianjazi F, Khaksar S, Esmaeilkhanian A, Bazli L, Eskandarinezhad S, Salahshour P, Sadeghi F, Rostamnia S, Vahdat S; (2022) Advancements in fabrication and application of chitosan composites in implants and dentistry: a review. Biomolecules 12, 155. DOI:10.3390/biom12020155
  • [112] Kikuchi M, Ikoma T, Itoh S, Matsumoto H, Koyama Y, Takakuda K, Shinomiya K,Tanaka J; (2004) Biomimetic synthesis of bone like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos Sci Technol 64, 819-825. DOI:10.1016/j.compscitech.2003.09.002
  • [113] Mahdavinia GR, Karimi MH, Soltaniniya. M, Massoumi B; (2019) In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. Int. J Biol Macromol 126. Р.443-453. DOI:10.1016/j.ijbiomac.2018.12.240
  • [114] Zhang Y, Ni M, Zhang M, Ratner B; (2003) Calcium phosphate chitosan composite scaffolds for bone tissue engineering. Tissue Eng 9, 337-345. DOI:10.1089/107632703764664800
  • [115] Vokhidova NR, Ergashev KH, Rashidova SSh; (2020) Hydroxyapatite chitosan Bombyx mori: synthesis and physicochemical properties. J. Inorg. Organomet. Polym. Mater. 30, 3357-3368. https://doi.org/10.1007/s10904-020-01649-9
  • [116] Ergashev KH; (2021) Synthesis and properties of composites with chitosan, Bombyx mori, and hydroxyapatite. Diss. Tashkent, 116 р
  • [117] Fathi MH, Hanifi A, Mortazavi V; (2008) Рreparation and Bioactivity Evaluation of Bone-Like Hydroxyapatite Nanopowder. J Mater Process Technol 202(1-3), 536-542. DOI:10.1016/J.JMATPROTEC.2007.10.004
  • [118] Kwon SH, Jun YK, Hong SH, Kim HE; (2003) Synthesis and dissolution behavior of B-TCP and HA/B-TCP composite powder. J Eur Ceram Soc 23(7), 1039-1045. DOI:10.1016/S0955-2219(02)00263-7
  • [119] Dorozhkin SV; (2016) Calcium orthophosphates (CaPO4): occurrence and properties. Prog Biomater 5, 9-70. DOI:10.1007/s40204-015-0045-z
  • [120] Dorozhkin SV; (2013) Self-setting calcium orthophosphate formulations. J Funct Biomater 4, 209-311. DOI:10.3390/jfb4040209
  • [121] Dorozhkin SV; (2012) Nanodimensional and nanocrystalline calcium orthophosphates. IJCMR 1(6), 105-174. DOI:10.5923/j.ajbe.20120203.01
  • [122] Lе HR, Qu S, Mackay RE, Rothwell R; (2012) Fabrication and mechanical properties of chitosan composite membrane containing hydroxyapatite particles. J Adv Ceram 1(1), 66-71. DOI:10.1007/s40145-012-0007-z
  • [123] Nitin EG, Pratheesh MD, Amar N, Pawan KD, Sharma GT; (2012) Therapeutic potential of stem cells in veterinary practice. Vet World 5(8), 499-507. DOI:10.5455/vetworld.2012.499-507
  • [124] Vedyaeva AP; (2016) Combined bioimplants for tissue regeneration in reconstructive surgery of the oral cavity (Experimental justification, clinical implementation). Diss. Saratov, 59-70, 79-82, 292. (in Russian)
  • [125] Mania S, Banach A, Tylingo R; (2020) Review of current research on chitosan as a raw material in three-dimensional printing technology in biomedical applications. Prog Chem Appl Chitin Deriv 25, 37-50. DOI:10.15259/PCACD.25.003
  • [126] Gortynska EN, Pogorielov MV; (2014) Periimplant zone morphology after application of the nanocomposite octeoplastic material. Nanotechnol Res Prac 2(2), 73-79. DOI:10.13187/ejnr.2014.2.73
  • [127] Fabiola VC, Héctor MR, Sergio HD, Ricardo ALV, Judith MDJ; (2017) Pilot study using a chitosan-hydroxyapatite implant for guided alveolar bone growth in patients with chronic Periodontitis. J Funct Biomater 8, 29. DOI:10.3390/jfb8030029
  • [128] Shavandi A, Bekhit AEA, Ali M.A, Sun Z, Gould M; (2015) Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Mater Sci Eng C 56, 481-493. DOI:10.1016/j.msec.2015.07.004
  • [129] Wang Y, Zhang L, Hu M, Liu H, Wen W, Xiao H, Niu Y; (2008) Synthesis and characterization of collagen-chitosan-hydroxyapatite artificial bone matrix. J Biomed Mater Res A 86(1), 244-252. DOI:10.1002/jbm.a.31758
  • [130] Patil JH, Murthy VKA, Kusanur RJ, Melavanki R; (2021) Synthesis and characterization of chitosan-hydroxyapatite composite for bone graft applications. J Indian Chem Soc 99(1), 100308. DOI:10.1016/j.jics.2021.10030
  • [131] Li H; (2010) Preparation and characterization of homogeneous hydroxyapatite/chitosan composite scaffolds via in-situ hydration. J Biomater Nanobiotechnol 1, 42-49. DOI:10.4236/jbnb.2010.11006
  • [132] Barinov SM, Smirnov VV, Fedotov AJ, Komlev VS, Fadeeva IV, Sergeeva NS, Sviridova IK, Kirsanova VA, Akhmedova SA; (2009) Porous composite materials based on chitosan for filling bone defects. Patent RU 2376019 C2. https://patentimages. storage.googleapis.com/37/c1/e6/29a51f831cd504/RU2376019C2.pdf
  • [133] Yan Y, Zhang X, Li C, Huang Y, Ding Q, Pang X; (2015) Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO2 nanotube for biomedical applications. Appl Surf Sci 332, 62-69. DOI:10.1016/j.apsusc.2015.01.136
  • 134] Shinn-JD; (2006) Preparation and properties of chitosan/calcium phosphate composites for bone repair. Dent Mater J 25(4), 706-712. DOI:10.4012/dmj.25.706
  • [135] Yanovska AA, Stanislavov AS, Sukhodub LB, Kuznetsov VN, Illiashenko Vyu, Danilchenko SN, Sukhodub LF; (2014) Silver-doped hydroxyapatite coatings formed on Ti-6Al-4V substrates and their characterization. Mater Sci Eng C, 36, 215-220. DOI:10.1016/j.msec.2013.12.011
  • [136] Dimitrov P, Dyulgerova E, Ilieva R, Vasileva R, Nanev V, Vladov I, Gabrashanska M, Alexandrov M, Tsocheva GN; (2017) Bone regeneration in critical-size calvarial defect in rats using innovative nano composite material of chitosan/nanohydroxyapatite composite. Tradit Mod Vet Med 2(1(2)), 17-20. https://scij-tmvm.com/vol./vol.2/1/P.Dimitrov%20et%20al.pdf
  • [137] Ge Z, Baguenard S, Lim LY, Wee A, Khor E; (2004) Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25, 1049-1058. DOI:10.1016/S0142-9612(03)00612-4
  • [138] Mohamed KR; (2012) Biocomposite materials. In Hu N (ed), Composites and their applications. InTech, London, 113-141. DOI:10.5772/48302
  • [139] Sun MZ, Deepti S, Ashok K, Yong WCh, Tae HO, Sung SH; (2012) Chitosanhydroxyapatite macroporous matrix for bone tissue engineering. Curr Sci 103(12), 1438-1446. https://www.researchgate.net/publication/263847826
  • [140] Sari NK, Indrani DJ, Johan C, Corputty JE; (2017) Evaluation of chitosanhydroxyapatite-collagen composite strength as scaffold material by immersion in simulated body fluid. J Phys Conf Ser 884, 012116. DOI:10.1088/1742-6596/884/1/012116
  • [141] Shakir M, Jolly R, Khan MSh, Iram N, Khan HM; (2015) Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies. Int J Biol Macromol 80, 282-292. DOI:10.1016/j.ijbiomac.2015.05.009
  • [142] Gharib X, Tan Y, Zhang B, Gu Z, Li X; (2009) Synthesis and evaluation of collagenchitosan-hydroxyapatite nanocomposites for bone grafting. J Biomed Mater Res Part A 89, 1079-1087. DOI:10.1002/jbm.a.32087
  • [143] Yu Li, Zhang Z; (2018) Porous chitosan/nano-hydroxyapatite composite scaffolds incorporating simvastatin-Loaded PLГА microspheres for bone repair. Cells Tissues Organs 205(1), 20-31. DOI:10.1159/000485502.
  • [144] Wang Y, Zhang L, Hu M, Liu H, Wen W, Xiao H, Yu N; (2008) Synthesis and characterization of collagen-chitosan-hydroxyapatite artificial bone matrix. J Biomed Mater Res 86(1), 244-252. DOI:10.1002/jbm.a.31758
  • [145] Silvia RC; (2019) Composites made of bioceramic and chitosan physical hydrogel as potential bone substitutes. https://tel.archives-ouvertes.fr/tel-02061737/document
  • [146] Husain Sh, Al-Samadani KH, Najeeb Sh, Zafar MS, Khurshid Z, Zohaib S, Qasim SB; (2017) Chitosan biomaterials for current and potential dental applications. Materials 10(6), 602-622. DOI:10.3390/ma10060602
  • [147] Tondnevis F, Ketabi M, Fekrazad R, Sadeghi A, Abolhasani MM; (2019) using chitosan besides nano hydroxyapatite and fluorohydroxyapatite boost dental pulp stem cell proliferation. J. Biomimetics Biomater Biomed Eng 42, 39-50. DOI:10.4028/www.scientific.net/JBBBE.42.39
  • [148] Simeonov M, Gussiyska A, Mironova J, Nikolova D, Apostolov A, Sezanova K, Dyulgerova E, Vassileva E; (2019) Novel hybrid chitosan/calcium phosphates microgels for remineralization of demineralized enamel - a model study. Eur Polym J 119, 14-21. DOI:10.1016/j.eurpolymj.2019.07.005
  • [149] Hashmi A, Zhang X, Kishen A; (2019). Impact of dentin substrate modification with chitosan-hydroxyapatite precursor nanocomplexes on sealer penetration and tensile strength. J Endod 45(7):935-942. DOI:10.1016/j.joen.2019.03.021.
  • [150] Matthew JO, Rachel RM, Melissa DK; (2019) Rapidly curing chitosan calcium phosphate composites as dental pulp capping agents. Regen Med Front 1, 190. DOI:10.20900/rmf20190002
  • [151] Baoe L, Xiaomei X, Miaoqi G, Yu J, Yu L, Zhiyuan Z, Shimin L, Haipeng L, Chunyong L, Hongshui W; (2019) Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Sci Repo 9, 14052. DOI:10.1038/s41598-019-49941-0
  • [152] Hanafy RA, Mostafa D, Abd El-Fattah A, Kandil S; (2020) Biomimetic chitosan against bioinspired nanohydroxyapatite for repairing enamel surfaces. Bioinspired, Biomimetic and Nanobiomater 9(2), 85-94. DOI:10.1680/jbibn.19.00008
  • [153] Kmiec M, Pighinelli L, Tedesco MF, Silva MM, Reis V; (2017) Chitosan-properties and applications in dentistry. Adv Tissue Eng Regen Med 2(4), 205-211. DOI:10.15406/atroa.2017.02.00035
  • [154] Chesnutt BM, Youling Y, Karyl B, Warren OH, Joel DB; (2009) Composite chitosan nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15(9), 2571-2579. DOI:10.1089/ten.tea.2008.0054
  • [155] Stępniewski M, Martynkiewicz J, Gosk J; (2017) Chitosan and its composites: properties for use in bone substitution. Polim Med 47(1), 49-53. DOI:10.17219/pim/76517
  • [156] Venkatesan J, Qian ZJ, Ryu BM, Kumar NA, Kim SK; (2011) Preparation and characterization of carbon nanotube-grafted-chitosan – Natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83(2), 569-577. DOI:10.1016/j.carbpol.2010.08.019.
  • [157] Dobrovolskaya IP, Yudin VE, Popryadukhin PV, Ivankova EM; (2016) Polymer matrices for tissue engineering. Publishing and printing landing Russian universities, St. Petersburg 176-199. https://sng1lib.org/dl/3502390/53e3e4. (in Russian)
  • [158] Danilchenko SN, Kalinkevich OV, Pogorelov MV, Sklyar A.M., Kalinichenko T.G., Kalinkevich AN, Bumeister VI, Sikora VZ, Suhodub LF; (2009) Experimental substantiation of the use of composite materials based on chitosan and calcium phosphates for the replacement of bone defects. Orthop Traumatol Prosthet 1, 66-72. http://web.kpi.kharkov.ua/krio/wp-content/uploads/sites/41/2020/02/2009-Ortopediya-travmatologiya-i-protezirovanie-3.pdf. (in Russian)
  • [159] Murugan R, Kumar S, Yang F., Ramakrishna S; (2005) Hydroxyl carbonate apatite hybrid bone composites using carbohydrate polymer. J. Compos Mater 39(13), 1159-1166. DOI:10.1177/0021998305048745
  • [160] Alessandro P, Daniela I, Consuelo C, Elpida P, Deepu A, Arianna C, Antonio T, David N; (2019) Engineering of chitosan-hydroxyapatite-magnetite hierarchical scaffolds for guided bone growth. Materials 12, 2321. DOI:10.3390/ma12142321
  • [161] Shomina SA; (2002) The use of chitosan in the treatment of acute inflammatory diseases of the maxillofacial area. Diss. Cand. honey. sciences. Tver, 195.
  • [162] Veiga A, Castro F, Rocha F, Oliveira AL; (2021) An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials. J Biomed Mater Res B Appl Biomater DOI:10.1002/jbm.b.34976
  • [163] Qiaoling H, Baoqiang L, Mang W, Jiacong Sh; (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25, 779-785. DOI:10.1016/s0142-9612(03)00582-9
  • [164] Xiaoyan W, Gan W, Long L, Dongyi Z; (2016) The mechanism of a chitosancollagen composite film used as biomaterial support for MC3T3-E1 cell differentiation. Sci Rep 6, 39322. DOI:10.1038/srep39322
  • [165] Guilherme MMG., Andre LVZ, Rodrigo CM, Sylma CM, Rodrigo FCM, Maria GNC; (2015) Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes. Res Biomed Eng 31(4). DOI:10.1590/2446-4740.0786
  • [166] Fellet G, Pilotto L, Marchiol L, Braidot E; (2021) Tools for nano-enabled agriculture: fertilizers based on calcium phosphate, silicon and chitosan nanostructures. Agronomy 11(6), 1239. DOI:10.3390/agronomy11061239
  • [167] Hesham RN; Maha N, Rania AHI, Nourtan FA, Gehanne ASA; (2020) Chitosan-Calcium Phosphate Composite Scaffolds for Control of Post-operative Osteomyelitis: Fabrication, characterization, and in vitro - in vivo evaluation. Carbohydr Polym 244, 116482. DOI:10.1016/j.carbpol.2020.116482
  • [168] Peniche C, Solis Y, Davidenko N, García R; (2010) Chitosan/hydroxyapatite-based composites. Biotecnol Apl 27(3), 202-210. http://scielo.sld.cu/pdf/bta/v27n3/bta02310.pdf
  • [169] Lukas G, Muhammad M, Viviana M, Francesca EC, Mark C, Philip RJ, Christopher L, Aldo RB; (2019) Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B 7, 6109-6124. DOI:10.1039/C9TB00897G
  • [170] Costa-Pinto A.R, Lemos AL, Tavaria FK, Pintado M; (2021) Chitosan and hydroxyapatite based biomaterials to circumvent periprosthetic joint infections. Materials 14(4), 804. DOI:10.3390/ma14040804
  • [171] Mohammad Sh, Reshma J, Aijaz AKh, Syed SA, Sharique A, Ahmar R, Owais AF; (2017) Resol based chitosan/nano-hydroxyapatite nanoensemble for effective Bone tissue engineering. Carbohydr Polym 179, 317-327. DOI:10.1016/j.carbpol.2017.09.103
  • [172] Alicia A, Naimah Z, Ezeddine H, Brahim H, Fabien B, Damien O, François Clauss, Florence F, Olivier H, Nadia BJ, Guoqiang H; (2019) Application of chitosan in bone and dental engineering. Molecules 24, 3009. DOI:10.3390/molecules24163009
  • [173] Saraswathy G, Pal S, Rose C, Sastry TP; (2001) A novel bio-inorganic bone implant containing deglued bone. chitosan and gelatin. Bull Mater Sci 24(4), 415-420. DOI:10.1007/BF02708641
  • [174] Kikuchi M, Matsumoto HN, Yamada T, Koyama Y, Takakuda K, Tanaka J; (2004) Glutaraldehyde crosslinked hydroxyapatite/collagen self-organization nanocomposites. Biomaterials 25, 63-69. DOI:10.1016/s0142-9612(03)00472-1
  • [175] Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG; (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26, 414-426. DOI:10.1016/j.biomaterials.2005.01.051

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-266624e3-efcf-4b6c-bca6-1754c78aa5fb
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.