Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 41 | 2 | 11-14

Article title

The use of alginate impression material for the controlled release of sodium fusidate

Title variants

PL
Zastosowanie alginatowej masy wyciskowej do kontrolowanego wydzielania fusydanu sodu

Languages of publication

EN

Abstracts

EN
Introduction. Alginate impression material has the potential to act as a controlled release material, either for transmucosal drug delivery, or for use as a self-disinfecting impression material in clinical dentistry. Aim of the study. To study whether sodium fusidate could be released from alginate impression material and, if so, to determine the release kinetics. Material and methods. Sodium fusidate was incorporated into alginate impression material at the mixing stage (2% by mass). The mixed material was pressed into a sheet and, once cured, discs (6 mm diameter x 2 mm thick) were cut out, and stored in water, one disc in a 5 ml volume. Small samples (20 μl) were withdrawn at time intervals of 1, 2, 3, 4, 5, 24 h, 1, 2 and 3 weeks and analysed by HPLC. Results. Sodium fusidate was released from the impression material in a process that was shown to be diffusion based for the first 5 hours or so. The diffusion coefficient was 2.25 x 10-5 cm2 s-1, and the release corresponded to 36.0 ± 1.0% of the total loading. The system thus shows promise for clinical application.
PL
Wstęp. Alginatowe masy wyciskowe mogą być potencjalnie użyte jako materiały służące do kontrolowanego uwalniania, np. leków wchłanianych przez błonę śluzową czy środków dezynfekcyjnych, które umożliwiałyby autodezynfekcję wycisków w warunkach klinicznych. Cel pracy. Ocena czy fusydan sodu może być wydzielany z alginatowych mas wyciskowych oraz ocena kinetyki wydzielania. Materiał i metody. Fusydan sodu wprowadzono podczas mieszania do alginatowej masy wyciskowej w proporcji 2% masowych. Z zamieszanego materiału uformowano cienką warstwę, po związaniu wycięto próbki w kształcie krążka (6 mm średnicy x 2 mm grubości), każdą próbkę przechowywano oddzielnie w 5 ml wody. Po upływie kolejno 1, 2, 3, 4, 5, i 24 godzin a następnie 1, 2 i 3 tygodni pobierano niewielkie ilości roztworu, który poddawano analizie w HPLC. Wyniki. Fusydan sodu w ciągu pierwszych 5 godzin był wydzielany z masy wyciskowej w procesie dyfuzji. Współczynnik dyfuzji wynosił 2.25 x 10-5 cm2 s-1, wydzielona ilość odpowiadała 36.0 ± 1.0%. W związku z tym ten system wydaje się być obiecujący w warunkach klinicznych.

Discipline

Journal

Year

Volume

41

Issue

2

Pages

11-14

Physical description

Dates

published
2013

Contributors

References

  • [1] Augst A.D., Kong H.J., Mooney D.J. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–633.
  • [2] Mazue G., Newman A.J., Scampini G., P. Dellatore, Hard G.C., IatropulosM.J., WilliamsG.M., BagnascoS.M. The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE-26184, human basic fibroblast growth factor. Toxicol Pathol. 1993;21:490–501.
  • [3] Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res. 2000;33:94–101.
  • [4] Liew C.W., Chan L.W., Ching A.L., Heng P.W. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharmacol. 2006;309:25–37.
  • [5] Haug A., Larsen B., Smidsrod O. A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand. 1966;20:183–190.
  • [6] Boyd J., Turvey J.R. Structural studies of alginic acid, using a bacterial poly-L-gluturonate lyase. Carbohydrate Res. 1978;66:187–194.
  • [7] Mackie W., Noy R., Sellen D.B. Solution properties of sodium alginate. Biopolymers. 1980;19:1839–1860.
  • [8] Cook W.D. Alginate dental impression materials: chemistry, structure and properties. J Biomed Mater Res. 1986;20:1–24.
  • [9] Crank J. Mathematics of diffusion. Oxford University Press; 1975.
  • [10] Nallamuthu N.A., Braden M., Patel M. Some aspects of the formulation of alginate dental impression materials – Setting characteristics and mechanical properties. Dent Mater. 2012;28:756–762.
  • [11] Bouhadir K.H., Kruger G.M., Lee K.Y., Mooney D.J. Sustained and controlled release of daunomycin from cross- linked poly(aldehyde guluronate) hydrogels. J Pharm Sci. 2000;89:910–919.
  • [12] Bouhadir K.H., Alsberg E., Mooney D.J. Hydrogels for combination delivery of antineoplastic agents. Biomateri- als. 2001;22:2625–2633.
  • [13] Barnhart K., Coutifaris C., Esposito M. The pharmacology of methotrexane. Expert Opin Pharmacol. 2002;2: 409–417.
  • [14] Bhanja S., Ellaiah P., Choudhury R., Murthy K.V., Panigrahi B., Kumar Padhy S., J Adv Pharm Res. 2010;1:17–25.
  • [15] Wang J., Wan Q., Chao Y., Chen Y. A self-disinfecting irreversible hydrocolloid impression material mixed with chlorhexidine solution. Angle Orthodont. 2007;77(5): 894–900.
  • [16] Beyerle M.P., Hensley D.M., Bradley D.V.Jr, Scartz R.S., Hilton T.J. Immersion disinfection of irreversible hydrocol- loid impressions with sodium hypochlorite. Part 1: Micro- biology. Int J Prosthodont. 1994;7:234–238.
  • [17] Kugel G., Perry R.D., Ferrari M., Lalicata P. Disinfection and communication practices: a survey of US dental lab- oratories. J Am Dent Assoc. 2000;131:786–792.
  • [18] Samaranayake L.P., Hunjan M., Jennings K.J. Carriage of oral flora on irreversible hydrocolloid and elastomeric im- pression materials. J Prosthet Dent. 1991;65:244–249.
  • [19] American Dental Association Council on Dental Materials. Instruments and equipment: infection control recom- mendations for the dental office and the dental labora- tory. J Am Dent Assoc. 1988;116:241–248.
  • [20] O’Neill A.J., Chopra I. Preclinical evaluation of novel antibacterial agents by microbiological and molecular tech- niques. Expert Opin Investig Drugs. 2004;13:1045–1063.
  • [21] Mulla Z., Edwards M.J., Nicholson J.W. Release of sodium fusidate from glass-ionomer dental cement. J Mater Sci, Mater Med. 2010;21:1997–2000.
  • [22] Shojaei A., Li X. Mechanisms of buccal mucoadhesion of novel copolymers of acrylic acid and polyethylene gly- col monomethylether monomethacrylate. J Control Rel1997;47:151–161.
  • [23] Peppas N.A., Sahlin J.J. Hydrogels as muco-adhesive and bio-adhesive materials: a review. Biomaterials. 1996;17:1553–1561.
  • [24] Smart J.D. The basis and underlying mechanisms of mucoadhesion. Adv Drug Del Rev. 2005;57:1556–1568.
  • [25] Patel V.F., Liu F., Brown M.B. Advances in oral transmucosal drug delivery. J Controlled Rel. 2011;153:106–116.
  • [26] Madhav N.V., Shakya A.K., Shakya P., Singh K. Orotransmucosal drug delivery systems: a review. J Controlled Rel. 2009;140:2–11.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-1732-0801-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.