Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 13 | 2 (47) | 65-76

Article title

Rola systemu endokanabinoidów w patogenezie i terapii otyłości

Title variants

EN
The role of Endocannabinoid System in pathogenesis and therapy of obesity

Languages of publication

PL

Abstracts

PL
Wkrótce po odkryciu pierwszego aktywnego składnika Cannabis sativa -∆ 9 -THC wykazano, iż jego działanie jest zależne od aktywacji specyficznego białka błonowego, tj. receptora kanabinoidowego (CB). Jak dotąd, zidentyfikowano dwa typy tego receptora – CB1 i CB2. Obecnie wiadomo już, że należą one do wewnątrzkomórkowego systemu sygnałowego, nazywanego układem kanabinoidowym (ECS), w którego skład wchodzą także ich ligandy oraz enzymy związane z syntezą i degradacją tych związków. ECS jest obecny w rejonach mózgu związanych z kontrolą odżywiania, a także w tkankach obwodowych odpowiedzialnych za pobór i przetwarzanie energii oraz metabolizm lipidów i glukozy, co wskazuje na udział tego układu w patogenezie otyłości. Liczne badania mówią m.in. o silnym oreksygennym działaniu endokanabinoidów, wywoływanym za pośrednictwem receptorów CB1 w CUN. Co więcej, aktywacja CB1 w tkankach obwodowych nasila lipogenezę, sprzyjając tym samym akumulacji tkanki tłuszczowej w takich narządach, jak wątroba. W trzustce i mięśniach szkieletowych zastosowanie agonistów CB1 indukowało wytworzenie insulinooporności i rozwój hiperglikemii, stanowiących parametry metaboliczne otyłości. Wyniki te dały podstawy do poszukiwania substancji blokujących CB1 o potencjalnej skuteczności w terapii otyłości. Próby przedkliniczne i kliniczne z zastosowaniem rimonabantu – antagonisty/odwrotnego agonisty CB1 – przyniosły korzystne rezultaty w postaci obniżenia masy ciała i zmniejszenia ryzyka powikłań kardiometabolicznych. Jednakże ze względu na poważne psychiatryczne skutki uboczne został on wycofany z obiegu. Celem badań jest przygotowanie leku, który służyłby leczeniu otyłości, jednocześnie nie wywołując powikłań. Ostatnio uwaga naukowców koncentruje się wokół neutralnych antagonistów i selektywnych, odwrotnych agonistów receptorów kanabinoidowych. Endokrynol. Ped. 13/2014;2(47):65-76.
EN
Soon after the discovery of the first active component of Cannabis sativa – -∆ 9 -THC, it has been shown that its action is mediated mainly through the activation of specific membrane protein – cannabinoid receptor (CB). So far two types of this protein were isolated: CB1 and CB2. It is already known that they constitute the intracellular signaling system, called Endocannabinoid System (ECS), which also includes their ligands and enzymes involved in the synthesis and degradation of this compounds. ECS is abundant in the brain regions associated with feeding control and also in peripheral organs regulating food intake and glucose and lipids metabolism, suggesting the crucial role of this system in pathogenesis of obesity. Much evidence has proven potent orexigenic action of endocannabinoids induced via the CB1 receptors activation in CNS. They also stimulate lipogenesis, leading to the fat accumulation in such organs like the liver. Moreover, the CB1 receptor agonist-based treatment induced insulin resistance and development of hyperglycaemia - haracteristic metabolic parameters of obesity. These results has led to the development of CB1-blocking drugs with potential efficacy in obesity treatment. Preclinical and clinical studies with the use fantagonist/inverse agonist – rimonabant have shown significant decrease in body weight and improve in cardiometabolic risk factors. However, serious psychiatric effects of this substance contributed to its withdrawal from the market. The main goal is to design a drug which might prevent obesity without these side effects. Therapies based on the CB1 receptor’s neutral antagonists or selective, inverse agonists might be a promising strategy in obesity treatment. Pediatr. Endocrinol.13/2014;2(47):65-76.

Discipline

Publisher

Year

Volume

13

Issue

Pages

65-76

Physical description

Dates

published
2014

Contributors

References

  • [1] Mathus-Vliegen L., Toouli J., FriedM. et al.: World Gastroenterology Organisation global guidelines on obesity. J. Clin. Gastroenterol., 2012:46(7), 555-561.
  • [2] Kinalska I., Popławska-Kita A., Telejko B. et al.: Otyłość a zaburzenia przemiany węglowodanowej. Endokrynologia, Otyłość, Zaburzenia Przemiany Materii, 2006:2, 3, 94-101.
  • [3] Serrano A., Javier Pavon F., Suarez J. et al.: Obesity and the Endocannabinoid System: Is There Stilla Future for CB1 Antagonists in Obesity? Curr. Obes. Rep., 2012:1,(4), 216-228.
  • [4] Przybylska D., Kurowska M., Przybylski P.: Otyłość i nadwaga w populacji rozwojowej. Hygeia Public Health, 2012:47(1), 28-35.
  • [5] Drzewoski J., Śliwińska A.: Rymonabant – nadzieją w leczeniu otyłości i cukrzycy typu 2. Diabetologia Doświadczalna i Kliniczna, 2007:7, 53-63.
  • [6] Pawlak M., Łaczmański Ł., Milewicz A.: Rola układu endokannabinoidowego i polimorfizmów genu CNR1w powstawaniu otyłości. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii, 2011:7, 192-196.
  • [7] Pertwee R.G.: Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol., 2008:13, 147-159.
  • [8] Silvestri C., Di Marzo V.: The Endocannabinoid System in Energy Homeostasisand the Etiopathology of Metabolic Disorders. Cell Metab., 2013 Apr 2:17(4), 475-490.
  • [9] Izzo A.A., Piscitelli F., Capasso R. et al.: Peripheral endocannabinoid dysregulation inobesity: relation to intestinal motility and energy processing induced by food deprivationand re-feeding. Br. J. Pharmacol., 2009:158(2), 451-461.
  • [10] Matias I., Di Marzo V.: Endocannabinoids and the control ofenergy balance. Trends Endocrinol. Metab., 2007:18(1), 27-37.
  • [11] Matias I., Bisogno T., Di Marzo V.: Endogenous cannabinoids in the brain and peripheral tissues: regulation of their levels and control of food intake. Int. J. Obes., 2006:30, 7-12.
  • [12] Heyman E., Gamelin F.X., Aucouturier J. et al.: The role of the endocannabinoid system in skeletalmuscle and metabolic adaptations to exercise: potential implications for the treatment of obesity. Obes Rev., 2012:13(12), 1110-1124.
  • [13] Muccioli G.G.: Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today., 2010:15(11-12), 474- 483.
  • [14] Lipina C., Rastedt W., Irving A. et al.: New vistas for treatment of obesity anddiabetes? Endocannabinoidsignallingand metabolism in the modulation of energy balance. Bioessays, 2012:34, 681-691.
  • [15] Di Marzo V.: Targeting the endocannabinoidsystem: to enhance or reduce? Nat Rev. Drug. Discov., 2008:7, 438-455.
  • [16] Jung K.M., Clapper J.R., Fu J. et al.: 2-arachidonoylglycerol signaling in forebrain regulates systemicenergy metabolism. Cell. Me- tab.,2012:7, 15(3), 299-310.
  • [17] Romero-Zerbo S.Y., Bermudez-Silva F.J.: Cannabinoids, eating behaviour, and energyhomeostasis. Drug. Test. Analysis, 2014:6, 52-58.
  • [18] Ryberg E., Larsson N., Sjögren S. et al.: The orphan receptor GPR55 is a novel cannabinoidreceptor. Br. J. Pharmacol., 2007:152(7), 1092-1101.
  • [19] Galve-Roperh I., Chiurchiu V., Diaz-Alonso J. et al.: Cannabinoid receptor signaling in progenitor/stem cell proliferationand differen- tiation. Prog. Lipid. Res., 2013:52(4), 633-650.
  • [20] Di Marzo V.: The endocannabinoid system in obesity and type 2 diabetes. Diabetologia, 2008:51, 1356-1367.
  • [21] Kozakowski J., Zgliczyński W.: Rola układu endokannabinoidowego w patogenezie otyłości. Post. N.Med., 2008:3, 198-202.
  • [22] Cristino L., Busetto G., ImperatoreR. et al.: Obesity-driven synaptic remodeling affectsendocannabinoid control of orexinergic neu- rons. Proc. Natl. Acad. Sci. USA, 2013:110(24), 2229-2238.
  • [23] Kirkham T.C., Williams C.M., Fezza F. et al.: Endocannabinoid levels in rat limbic forebrain and hypothalamus inrelation to fasting, feeding and satiation: stimulation of eating by2-arachidonoyl glycerol. Br. J. Pharmacol., 2002:136(4), 550-557.
  • [24] Tam J., Cinar R., Liu J.: Peripheral Cannabinoid-1 Receptor Inverse Agonism Reduces Obesity by Reversing Leptin Resistance. Cell. Metab., 2012:16(2), 167-179.
  • [25] Di Marzo V., Goparaju S.K., Wang L. et al.: Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature, 2001:410(6830), 822-825.
  • [26] Lim C.T., Kola B., Feltrin D. et al.: Ghrelin and cannabinoids require the ghrelin receptor to affect cellularenergy metabolism. Mol. Cell. Endocrinol., 2013:365(2), 303-308.
  • [27] Kola B.Farkas I., Christ-Crain M. et al.: The Orexigenic Effect of Ghrelin Is Mediated through Central Activation of the Endogenous Cannabinoid System. Plos One, 2008:3, 1-8.
  • [28] Bellocchio L., Cervino C., Vicennati V. et al.: Cannabinoid Type 1 Receptor: Another Arrow in the Adipocytes’ Bow. Journal of Neu- roendocrinology, 2008:20, 130-138.
  • [29] Tam J., Liu J., Mukhopadhyay B. et al.: Endocannabinoids in Liver Disease. Hepatology., 2011:53(1), 346-355.
  • [30] Bermudez-Silva F.J., Suarez J., Baixeras E. et al.: Presence of functional cannabinoid receptors in humanendocrine pancreas. Dia- betologia, 2008:51, 476-487.
  • [31] Eckardt K., Sell H., Taube A. et al.: Cannabinoid type 1 receptors in human skeletal muscle cellsparticipate in the negative crosstalk between fat and muscle. Diabetologia, 2009:52, 664-674.
  • [32] Crespillo A., Suarez J., Bermudez-Silva F.J.: ”Expression of the cannabinoid system in muscle: effects of a high-fat dietand CB1 receptor blockade”. Biochem. J., 2011:433, 175-185.
  • [33] Alhouayek M., Muccioli G.G.: The endocannabinoid system ininflammatory bowel diseases: from pathophysiology to therapeuticop- portunity. Trends Mol. Med., 2012:18(10), 615-625.
  • [34] Engeli S., Böhnke J., Feldpausch M. et al.: Activation of the Peripheral Endocannabinoid System in Human Obesity. Diabetes, 2005:54(10), 2838-2843.
  • [35] Osei-Hyiaman D., DePetrillo M., Pache P. et al.: Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest., 2005:115(5), 1298-1305.
  • [36] Sipe J.C., Waalen J., Gerber A. et al.: Overweight and obesity associated with a missense polymorphism in fatty acid amide hydro- lase (FAAH). Int. J. Obes., 2005:29(7), 755-759.
  • [37] You T., Disanzo B.L., Wang X. et al.: Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise. Lipids Health Dis., 2011:28, 10, 194.
  • [38] O’Keefe L., Simcocks A.C., Hryciw D.H. et al.: The cannabinoid receptor 1 and its role in influencing peripheral metabolism. Diabetes Obes. Metab., 2013, 1-11.
  • [39] Perwitz N., Wenzel J., Wagner I. et al.: Cannabinoid type 1 receptor blockade induces transdifferentiation towards a brown fat phe- notype in white adipocytes. Diabetes Obes Metab., 2010:12(2), 158-166.
  • [40] Jourdan T., Djaouti L., Demizieux L. et al.: CB1 antagonism exerts specific molecular effects on visceral and subcutaneous fat and reverses liver steatosis in diet-induced obese mice. Diabetes, 2010:59(4), 926-934.
  • [41] Esposito I., Proto M.C., Gazzerro P. et al.: The cannabinoid CB1 receptor antagonist rimonabant stimulates 2-deoxyglucose uptake in skeletal muscle cells by regulating the expression of phosphatidylinositol-3-kinase. MolPharmacol., 2008:74(6), 1678-1686.
  • [42] Song D., Bandsma R.H., Xiao C. et al.: Acute cannabinoid receptor type 1 (CB1R) modulation influences insulin sensitivity by an effect outside the central nervous system in mice. Diabetologia, 2011:54(5), 1181-1189.
  • [43] Lipina C., Stretton C., Hastings S. et al.: Regulation of MAP kinase-directed mitogenic and protein kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle cells. Diabetes, 2010:59(2), 375-385.
  • [44] Li C., Bowe J.E., Huang G.C. et al.: Cannabinoid receptor agonists and antagonists stimulate insulin secretion from isolated human islets of Langerhans. Diabetes Obes Metab., 2011:13(10), 903-910.
  • [45] DiPatrizio N.V., Astarita G., Schwartz G. et al.: Endocannabinoid signal in the gut controls dietary fat intake. Proc. Natl. Acad. Sci. USA, 2011:108(31), 12904-12908.
  • [46] Izzo A.A., Camilleri M.: Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects. Gut, 2008:57, 1140-1155.
  • [47] Sipe J.C., Scott T.M., Murray S. et al.: Biomarkers of endocannabinoid system activation in severe obesity. PLoS One., 2010 Jan 20:5(1), 1-6.
  • [48] Matias I., Gatta-Cherifi B., Tabarin A. et al.: Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity. PLoS ONE, 2012:7 (7), 1-9.
  • [49] Pertwee R.G.: The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endo- cannabinoids. AAPS J., 2005:7, E625-E654.
  • [50] Pertwee R.G.: Cannabinoids and multiple sclerosis. MolNeurobiol., 2007:36, 45-59.
  • [51] Janero D.R., Makriyannis A.: Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin. Emerging Drugs, 2009:14, 43-65.
  • [52] Lange J.H., Kruse C.G.: Keynote review: Medicinal chemistry strategies to CB1 cannabinoid receptor antagonists. Drug Discov. Today., 2005:10, 693-702.
  • [53] Cota D., Marsicano G., LutzB. et al.: Endogenous cannabinoid system as a modulator of food intake. Int. J. Obes., 2003:27, 289- 301.
  • [54] Pi-Sunyer F.X., Aronne L.J., Heshmati H.M. et al.: Effect of Rimonabant, a Cannabinoid-1 Receptor Blocker, on Weight and Car- diometabolic Risk Factors in Overweight or Obese Patients, RIO-North America: A Randomized Controlled Trial. JAMA, 2006:295, 761-776.
  • [55] Despres J.P., Golay A., Sjostrom L.: Effects of Rimonabant on Metabolic Risk Factors in Overweight Patients with Dyslipidemia. N. Engl. J. Med., 2005:353, 2121-2134.
  • [56] Derosa G., Maffioli P.: Anti-obesity drugs: a review about their effects and their safety. Expert Opin. Drug Saf., 2012:11, 459-471.
  • [57] Taskinen M.R.: ADAGIO-Lipids Gives Promises but Faces the Setbacks. Arterioscler. Thromb. Vasc. Biol., 2009:29, 339-340.
  • [58] McLaughlin P.J.: Reports of the death of CB1 antagonists have been greatly exaggerated: recent preclinical findings predict improved safety in the treatment of obesity. Behavioural Pharm., 2012:23, 537-550.
  • [59] Christensen R., Kristensen P.K., Bartels E.M.: Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet, 2007:370, 1706-1713.
  • [60] Bermudez-Silva F.J., Viveros M.P., McPartland J.M. et al.: The endocannabinoid system, eating behavior and energy homeostasis: The end or a newbeginning? Pharmacology, Biochemistry and Behavior, 2010:95, 375-382.
  • [61] Wiley J.L., Breivogel C.S., Mahadevan A. et al.: Structural and pharmacological analysis of O-2050, a putative neutral cannabinoid CB1 receptor antagonist. European Journal of Pharmacology, 2011:651, 96-105.
  • [62] Takano A., Gulyás B., Varnäs K. et al.: Low Brain CB1 Receptor Occupancy by a Second Generation CB1 Receptor Antagonist TM38837 in Comparison With Rimonabant in Nonhuman Primates: A PET Study. Synapse, 2014:68, 89-97.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-1730-0282-1487
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.