Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 39 | 2 |

Article title

Rola transporterów GLUT1 i GLUT3 w pobieraniu glukozy i kwasu dehydroaskorbinowego przez komórki nowotworowe

Content

Title variants

EN
The role of transporters GLUT1 and GLUT3 in glucose and dehydroascorbic acid uptake in cancer cells

Languages of publication

PL

Abstracts

PL
Charakterystyczną cechą komórek nowotworowych jest zwiększony metabolizm połączony z zahamowaniem fosforylacji oksydacyjnej. Oddychanie przebiegające w warunkach beztlenowych prowadzi do przyspieszonej glikolizy i wzrostu zapotrzebowania na glukozę. W nasilonym pobieraniu glukozy przez komórki pośredniczą transportery glukozy – GLUT (ang. glucose transporters). Nadekspresję białek GLUT, w szczególności regulowanych warunkami hipoksji - GLUT1 i GLUT3 zaobserwowano w wielu typach nowotworów. Ponieważ transportery te wykazują wysokie powinowactwo do glukozy i przenoszą ją z dużą wydajnością, stanowią one kluczowy czynnik limitujący metabolizm glukozy w komórkach guza. Dotychczasowe badania koncentrowały się na roli jaką odgrywają transportery GLUT1 i GLUT3 w transporcie glukozy pomijając aspekt związany z metabolizmem witaminy C. Transportery GLUT pośredniczą w pobieraniu przez komórkę kwasu dehydroaskorbinowego (DHA), który wewnątrz komórki ulega redukcji do biologicznie aktywnej formy witaminy C. W warunkach fizjologicznych witamina C ma właściwości antyoksydacyjne, chroniąc komórki przed stresem oksydacyjnym. Jednakże w zależności od warunków, witamina C może również wywoływać efekty pro-oksydacyjne związane z generowaniem reaktywnych form tlenu. Stwierdzono, że niski poziom wolnych rodników i nadtlenku wodoru stymuluje żywotność i proliferację komórek, podczas gdy wysokie stężenie reaktywnych form tlenu prowadzi do apoptozy lub nekrozy. W pracy przedstawiono aktualny stan wiedzy na temat transportu glukozy i kwasu dehydroaskorbinowego z udziałem transporterów GLUT1 i GLUT3 w komórkach nowotworowych.
EN
Cancer cells are characterized by acceleration in energy consumption, together with the inhibition of oxidative phosphorylation. The anaerobic respiration leads to the enhancement of glycolysis and the higher rate of glucose uptake into cancer cells. The upregulation of glucose transport across the plasma membrane is mediated by facilitative glucose transporters named GLUTs. The overexpression of GLUTs, especially the hypoxia responsive GLUT1 and GLUT3, has been frequently observed in the variety of human malignancies. Since GLUT1 and GLUT3 have a high transporting efficiency and affinity to glucose, these proteins are key rate-limiting factors in glucose uptake by cancer cells. The reported data focus on the glucose transport mediated by GLUT1 and GLUT3, ignoring the participation of both carriers in vitamin C metabolism. The GLUT proteins transport dehydroascorbic acid (DHA) which intracellularly is reduced to an antioxidant, protecting cells from oxidative stress. However, vitamin C may also have pro-oxidant effects, via its ability to generate reactive oxygen species (ROS). It has been shown, that the low level of free radicals and hydrogen peroxide stimulates cell proliferation and viability, whereas the high concentration of reactive oxygen species may induce apoptosis or necrosis. This paper presents the current state of knowledge concerning the transport of glucose and dehydroascorbic acid mediated by hypoxia-induced facilitative glucose transporters in cancer cells.

Keywords

Discipline

Year

Volume

39

Issue

2

Physical description

Contributors

  • Katedra Cytobiochemii Wydział Biologii i Ochrony Środowiska Uniwersytetu Łódzkiego

References

  • Ferreira LMR. Cancer metabolism: the Warburg effect today. Exp Mol Pathol., 2010; 89: 372-380.
  • Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009; 121: 29-40.
  • Thangaraju M, Carswell KN, Prasad PD, Ganapathy V. Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3. Biochem J., 2009; 417: 379-389.
  • Xie H, Valera VA, Merino MJ, Amato AM, Signoretti S, Linehan WM i wsp. LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Mol Cancer Ther. 2009; 8: 626-635.
  • Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherap. 2007; 53: 233-256.
  • Du J, Cullen JJ, Buettner GR. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochi Biophys Acta. 2012; 1826: 443-457.
  • Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr. 2003; 89: 3-9.
  • Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics. 2002; 80: 553-557.
  • Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (Review). Mo Membr Biol. 2001; 18: 247-256.
  • Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007; 8: 113-128.
  • Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S i wsp. The impact of N- and O-glycosylation on the functions of Glut-1 transporter in human thyroid anaplastic cells. Biochim Biophys Acta. 2003; 1621: 92-101.
  • Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005; 202: 654-662.
  • Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT. Overexpression of GLUT1 and GLUT3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer. 1997; 80: 1046-1051.
  • Ayala FR., Rocha RM, Carvalho KC, Carvalho AL, da Cunha IW, Lourenco SV, i wsp. GLUT1 and GLUT3 as potential prognostic markers for oral squamous cell carcinoma. Molecules. 2010; 15: 1046-1051.
  • Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta, 2010; 1805: 141-152.
  • Maschauer S, Prante O, Hoffmann M, Deichen JT, Kuwert T. Characterization of 18F-FDG uptake in human endothelial cells in vitro. J Nucl Med. 2004; 45: 455-460.
  • Usuda K, Sagawa M, Aikawa H, Ueno M, Tanaka M, Machida Y i wsp. Correlation between glucose transporter-1 expression and 18F-fluoro-2-deoxyglucose uptake on positron emission tomography in lung cancer. Gen Thorac Cardiovasc Surg. 2010; 58: 405-410.
  • Kaira K, Endo M, Abe M, Nakagawa K, Ohde Y, Okumura T i wsp. Biologic correlates of ¹⁸F-FDG uptake on PET in pulmonary pleomorphic carcinoma. Lung Cancer. 2011; 71: 144-150
  • Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 2006; 12: 5659-5667.
  • Cifuentes M, García MA, Arrabal PM, Martínez F, Yañez MJ, Jara N i wsp. Insulin regulates GLUT1-mediated glucose transport In MG-63 human osteosarcoma cells. J Cell Physiol. 2011; 226: 1425-1432.
  • Hayashi M, Sakata M, Takeda T, Yamamoto T, Okamoto Y, Sawada K i wsp. Induction of glucose transporter 1 expression through hypoxia-inducible factor 1α under hypoxic conditions in trophoblast-derived cells. J Endocrinol. 2004; 183: 145-154.
  • Frolova A, Flessner L, Chi M, Kim ST, Foyouzi-Yousefi N, Moley KH. Facilitative glucose transporter type 1 is differentially regulated by progesterone and estrogen in murine and human endometrial stromal cells. Endocrinology. 2009; 150: 1512-1520.
  • Díaz M, Vraskou Y, Gutiérrez J, Planas JV. Expression of rainbow trout glucose transporters GLUT1 and GLUT4 during in vitro muscle cell differentiation and regulation by insulin and IGF-I. Am J Physiol Regu Integr Comp Physiol. 2009; 296: R794-R800.
  • Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004; 64: 2627-2633.
  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H i wsp. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 2009; 325: 1555-1559
  • Maher JC, Savaraj N, Priebe W, Liu H, Lampidis TJ. Differential sensitivity to 2 deoxy- D-glucose between two pancreatic cell lines correlates with GLUT1 expression. Pancreas. 2005; 30: e34-e39.
  • Aft RL, Zhang FW, Gius D. Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanizm of cell death. Br J Cancer. 2002; 87: 805 812.
  • Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M, i wsp. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther. 2007; 6: 3049-3058.
  • Dwarakanath BS. Cytotoxicity, radiosensitization, and chemosensitization of tumor cells by 2-deoxy-D-glucose in vitro. J Cancer Res Ther. 2009; 5 Suppl. 1: 27-31.
  • Dwarakanath BS, Khaitan D, Ravindranath T. 2-deoxy-D-glucose enhances the cytotoxicity of topoisomerase inhibitors in human tumor cell lines. Cancer Biol Ther. 2004; 3: 864-870.
  • Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 2004;
  • 64: 31-34.
  • Subbarayan PR, Wang PG, Lampidis TJ, Ardalan B, Braunschweiger P. Differential expression of GLUT1 mRNA and protein levels correlates with increased sensitivity to the glyco-conjugated nitric oxide donor (2-glu-SNAP) in different tumor cell types. J Chemother. 2008; 20: 106-111.
  • Corti A, Casini AF, Pompella A. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys. 2010; 500: 107-115
  • Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem. 1997; 272: 18982-18989.
  • Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem. 2000; 275: 28246-28253.
  • Bode AM, Liang HQ, Green EH, Meyer TE, Buckley DJ, Norris A. Ascorbic acid recycling in Nb2 lymphoma cells: implications for tumor progression. Free Radic Biol Med. 1999; 26: 136-147.
  • Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood. 1994; 84: 1628-1634.
  • Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Cancer Res. 57: 2529-2537.
  • Corti A, Raggi C, Franzini M, Paolicchi A, Pompella A, Casini AF. Plasma membrane gamma-glutamyltransferase activity facilitates the uptake of vitamin C in melanoma cells. Free Radic Biol Med. 2004; 37: 1906-1915.
  • KC S, Cárcamo JM, Golde DW. Viatmin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J. 2005; 19: 1657-1667
  • Ozer A, Bruick RK. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol. 2007; 3: 144-153.
  • Tajima S, Pinnell SR. Ascorbic acid preferentially enhances type I and III collagen gene transcription in human skin fibroblasts. J Dermato Sci. 1996; 11: 250-253.
  • Groblewska M, Mroczko B, Szmitkowski M. The role of selected matrix metalloproteinases and their inhibitors in colorectal cancer development. Postepy Hig Med Dosw. 2010; 64: 22-30.
  • Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001; 294: 1337-1340.
  • Pagé EL, Chan DA, Giaccia AJ, Levine M, Richard DE. Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell 2008; 19: 86-94.
  • Li SH, Ryu JH, Park SE, Cho YS, Park JW, Lee WJ i wsp. Vitamin C supplementation prevents testosterone-induced hyperplasia of rat prostate by down-regulating HIF-1alpha. J Nutr Biochem. 2010; 21: 801-808.
  • Cascella B, Mirica LM. Kinetic analysis of iron-dependent histone demethylases: α-ketoglutarate substrate inhibition and potential relevance to the regulation of histone demethylation in cancer cells. Biochemistry. 2012; 51: 8699-8701.
  • Esteban MA, Pei D. Vitamin C improves the quality of somatic cell reprogramming. Nat Genet. 2012; 44: 366-367.
  • Ong TP, Moreno FS, Ross SA. Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics. 2011; 4: 275-292.
  • Li Y, Schellhorn HE. New development and novel therapeutic perspectives for vitamin C. J Nutr. 2007; 137: 2171-2184.
  • Aditi A, Graham DY. Vitamin C, gastritis, and gastric disease: a historical review and update. Gig Dis Sci. 2012; 57: 2504-2515.
  • Verrax J, Calderon PB. The controversial place of vitamin C in cancer treatment. Biochem Pharmacol. 2008; 76: 1644-1652
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006; 160: 1 40
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease.
  • Int J Biochem Cell Biol. 2007; 39: 44-84.
  • Cameron E, Campbell A. The orthomolecular treatment of cancer. II. Clinical trial of high-dose ascorbic acid supplements in advanced human cancer. Chem Biol Interact. 1974; 9: 285-315.
  • Mandl J, Szarka A, Bánhegyi G. Vitamin C: update on physiology and pharmacology. Br J Pharmacol. 2009; 157: 1097-1110.
  • Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, i wsp. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004; 140: 533-537.
  • Mikirova N, Casciari J, Rogers A, Taylor P. Effect of high-dose intravenous vitamin C on inflammation in cancer patients. J Transl Med. 2012; 10:187.
  • Espey MG, Chen P, Chalmers B, Drisko J, Sun AY, Levine M, i wsp. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 2011; 50: 1610-1619.
  • Vollbracht C, Schneider B, Leendert V, Weiss G, Auerbach L, Beuth J. Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: results of a retrospective, multicentre, epidemiological cohort study in Germany. In Vivo. 2011; 25: 983-990.

Document Type

paper

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-163ba51e-d186-4ecd-917f-58ef5842c228
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.