Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 12 | 108-128

Article title

Kratery Morasko – obrona hipotezy ukośnego impaktu w kontekście dostępnej wiedzy i wyników badań

Authors

Content

Title variants

EN
Morasko craters – in defense of oblique impact origin based on knowledge and research

Languages of publication

PL

Abstracts

EN
Over 2 years ago there was published an article (Bronikowska 2018a) challenging some results of research related to Morasko meteorite fall. Those results are huge problem for scientists who are not able to explain them using simplified models and maybe do not want to admit that some assumptions should be verified and redefined. One of hypothesis discussed in the paper was article manifesting that Morasko craters were created during oblique impact (Walesiak 2017) and that initial trajectory can be estimated by elongation of almost all cavities, their bilateral symmetries according to longer axis and observed asymmetries of rims. By comparison to Campo del Cielo craters Walesiak suggested that impact angle could be very shallow (10–20°), as ellipticity of all smaller Morasko structures is approx. 1,3. Further analysis of topography in neighborhood of Morasko revealed that there may exist more impact craters around this area, which may explain discovery of two iron meteorites near Oborniki village (17 km NW from Meteorite Morasko Restricted Area), unfortunately lost during World War II. In fact, Bronikowska confused definitions “oblique impact” and “elliptical craters”, what can be supported by given references (Elbeshausen et al. 2009) confirming Walesiak hypothesis. Unfortunately, this misunderstanding touches also another article of this author (Bronikowska et al. 2017), where obliquity was neglected. However, estimated during that modeling pre-impact angle (30–43°), according to known definitions written in many publications, should be classified as oblique impact. All elongated craters, as well as morphology of the largest structure in Meteorite Morasko Restricted Area suggest impact from NW while during reconstruction of meteoroid parameters Bronikowska assumed impactor coming from NE (based on existing strewn field). Considering not clear relation between meteorites and craters (e.g., lack of findings in cavities, relatively poor number of shrapnel fragments around structures and possibility that craters may be much older than fall of meteorites), it may be not enough reliable justification. Even if relation exists, example of Whitecourt (with distribution of meteorites downrange), compared with abundance of Morasko shrapnel fragments collected hundreds of meters NE from Restricted Area, undermines parameter used in modelling. Also, single fragmentation is doubtful, concluded after unreasonable omitting known craters outside Restricted Area (e.g., crater no 8 described by Pokrzywnicki (1964) and structure no 9 mentioned by Hodge (1994)). Finally, use of iSALE-2D shock physics code (valid for vertical impacts only) for modelling of elliptical craters formed during highly oblique impact (angle lower than 12°), even considering vertical component (which approximation is only applicable for impact into materials with a friction coefficient of about f=0,7 with no or very little cohesion) (Elbeshausen et al. 2009), also should not be considered as proper applied method leading to get valuable results. In this article there is proposed new strewn field definition for Morasko meteorite, based on elongation of all known and unconfirmed (yet) craters. Surprisingly, estimated (redefined) pre-impact trajectory gives convincing explanation for bilaterally symmetrical distribution of documented findings.

Discipline

Year

Volume

12

Pages

108-128

Physical description

Dates

published
2021

Contributors

References

  • Anderson J.L.B., Schultz P.H., Heineck J.T., 2003, Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry, Journal of Geophysical Research, 108, s. 5094–5103.
  • Beech M., Comte M., 2018, The Chant Meteor Procession of 1913 – Towards a Descriptive Model, American Journal of Astronomy and Astrophysics, 6(2), s. 31–38.
  • Bland P.A., Artemieva N.A., 2006, The rate of small impacts on Earth, Meteoritics and Planetary Science, 41, s. 607–631.
  • Bronikowska M., Artemieva N.A. Wünnemann K., 2017, Reconstruction of the Morasko meteoroid impact – Insight from numerical modeling, Meteoritics and Planetary Science, 52, s. 1704–1721.
  • Bronikowska M., 2018a, Jak powstały Kratery Morasko? Rewizja istniejących poglądów dotyczących genezy zagłębień w rezerwacie pod Poznaniem, Acta Soc. Metheor. Polon., 9, s. 30–41.
  • Bronikowska M., 2018b, Kierunek przylotu oraz parametry fizyczne meteoroidu Morasko wraz z ich implikacjami dla elipsy rozrzutu – wnioski z badań numerycznych, Acta Soc. Metheor. Polon., 9, s. 17–29.
  • Buhl S., 2010, The Gibeon iron meteorites. Their discovery, history and research. Part I, Meteorite Magazine, 16 (3), s. 23-28 / Meteoryty żelazne Gibeon. Część I: Odkrycie i historia, Meteoryt, 4(76), s. 6–10.
  • Cassidy W.A., Renard M.L., 1996, Discovering research value in the Campo del Cielo, Argentina, meteorite craters, Meteoritics and Planetary Science, 31, s. 433–448.
  • Chyba C.F., Thomas P.J., Zahnle K.J., 1993, The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid, Nature, 361, s. 40–44.
  • Collins G.S., Melosh H.J., Marcus R.A., 2005, Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteoritics and Planetary Science, 40, s. 817–840.
  • Elbeshausen D., Wunnemann K., Collins G.S., 2009, Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms, Icarus, 204, s. 716–731.
  • French B.M., 1998, Traces of catastrophe. a handbook of shock-metamorphic effects in terrestrial meteorite impact structuress, LPI, Contribution No. 954, Houston, Texas.
  • Herd C.D.K., Froese D.G., Walton E.L., Kofman R.S., Herd E.P.K., Duke M.J.M., 2008, Anatomy of a young impact event in central Alberta, Canada: Prospects for the missing Holocene impact record, Geology, 36, s. 955–958.
  • Herrick R., Hessen K.K., 2006, The planforms of low-angle impact craters in the northern hemisphere of Mars, Meteoritics and Planetary Science, 41(10), s. 1483–1495.
  • Hodge Paul, 1994, Meteorite craters and impact structures of the Earth, Cambridge University Press, 1994, ISBN 0-521-12604-5.
  • Jaszczura S., 2017, Prognoza oddziaływania na środowisko dotycząca projektu miejscowego planu zagospodarowania przestrzennego obszaru „Morasko–Radojewo–Umultowo” część jezioro Umultowskie w Poznaniu, Miejska Pracownia Urbanistyczna, Poznań.
  • Kenkmann T., Artemieva N.A., Wünnemann K., Poelchau M.H., Elbeshausen D., Prado H.N.D., 2009, The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage, Meteoritics and Planetary Science, 44, s. 985–1000.
  • Kofman R.S., Herd C.D.K., Froese D.G., 2010, The Whitecourt meteorite impact crater, Alberta, Canada, Meteoritics and Planetary Science, 45(9), s. 1429–1445.
  • Łosiak A., Wild E.M., Geppert W.D., Huber M.S., Jeleht A., Kriiska A., Kulkov A., Paavel K., Pirkovic I., Plado J., Steier P., Välja R., Wilk J., Wisniowski T., Zanetti M., 2016, Dating a small impact crater: An age of Kaali crater (Estonia) based on charcoal emplaced within proximal ejecta, Meteoritics and Planetary Science, 51(4), s. 681–695.
  • Łosiak A., Jeleht A., Plado J., Szyszka M., Kirsimäe K., Wild E.M., Steier P., Belcher C., Jaźwa A.M., Helde R., 2020, Determining the age and possibility for an extraterrestrial impact formation mechanism of the Ilumetsa structures (Estonia), Meteoritics and Planetary Science, 55(2), s. 274–293.
  • Newman J.D., Herd C.D.K., 2013, Whitecourt Meteorite Impact Crater: Distribution, Texture, and Mineralogy of Meteorites and the Discovery of Carbon Spherules Possibly Associated with the Impact Event, LPSC 44#2316.
  • Newman J.D., Herd C.D.K., 2015, Mineralogy, petrology, and distribution of meteorites at the Whitecourt crater, Alberta, Canada, Meteoritics and Planetary Science, 50(2), s. 305–317.
  • Melosh H.J., Ivanov B.A., 1999, Impact Crater Colapse, Annual Review of Earth and Planetary Sciences, 27, s. 385–415.
  • Muszyński A., Kryza R., Karwowski Ł., Pilski A.S., Muszyńska J., 2012, Morasko. Największy deszcz meteorytów żelaznych w Europie środkowej (Morasko. The largest iron meteorite shower in Central Europe), seria: Studia i Prace z Geografii i Geologii nr 28, Bogucki Wydawnictwo Naukowe, Poznań, ss. 111.
  • Ormö J., Lindström M., Lepinette A., Martinez-Frias J., Diaz-Martinez E., 2006, Cratering and modification of wet-target craters: Projectile impact experiments and field observations of the Lockne marine-target crater (Sweden), Meteoritics and Planetary Science 41(10), 1605–1612.
  • Perlerin V., 2013, Meteor Terminology, 2013-03-08, American Meteor Society, https://www.amsmeteors.org/2013/03/meteor-terminology/
  • Pilski A.S., Wasson J.T., Muszyński A., Kryza R., Karwowski Ł., Nowak M., 2013, Low-Ir IAB-irons from Morasko and other locations in central Europe: One fall, possibly distinct from IAB-MG, Meteoritics and Planetary Science, 48(12), s. 2531–2541.
  • Poelchau M.H., Kenkmann T., 2008, Asymmetric signatures in simple craters as an indicator for an oblique impact direction, Meteoritics and Planetary Science, 43(12), s. 2059–2072.
  • Pokrzywnicki J., 1964, I. Meteoryty Polski. II. Katalog meteorytów w zbiorach polskich, Studia Geologica Polonica, vol. XV, Wydawnictwa Geologiczne, Warszawa.
  • Popova O.P., Jenniskens P., Emel’yanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V.I., Badyukov D.D., Yin Q.Z., Gural P.S., Albers J., Granvik M., Evers L.G., Kuiper J., Kharlamov V., Solovyov A., Rusakov Y.S., Korotkiy S., Serdyuk I., Korochantsev A.V., Larionov M.Y., Glazachev D., Mayer A.E., Gisler G., Gladkovsky S.V., Wimpenny J., Sanborn M.E., Yamakawa A., Verosub K.L., Rowland D.J., Roeske S., Botto N. W., Friedrich J.M., Zolensky M.E., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J.I., Zhou Q., Li X. H., Li Q. L., Liu Y., Tang G.Q., Hiroi T., Sears D., Weinstein I.A., Vokhmintsev A.S., Ishchenko A.V., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M.K., Komatsu M., Mikouchi T., Chelyabinsk Airburst Consortium. 2013. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 342(6162), s. 1069–1073.
  • Register P.J., Aftosmis M., Stern E.C., Brock J.M., Seltner P., Willems S., Gülhan A., Mathias D.L., 2019, Interactions between asteroid fragments during atmospheric entry, Icarus, 337, 113468.
  • Schultz P.H., Eberhardy C.A., Ernst C.M., A’Hearn M.F., Sunshine J.M., Lisse C.M., 2007, The Deep Impact oblique impact cratering experiment, Icarus, 190, s. 295–333.
  • Shoemaker E.M., 1962, Interpretation of lunar craters, w: Z. Kopal (eds.), Physics and astronomy of the moon, San Diego, Academic Press., s. 283–359.
  • Socha K., 2020, „Pożegnanie Kraterów Morasko” – Polemika!, Acta Soc. Metheor. Polon., 11, s. 159–166.
  • Stankowski W., 2001, The geology and morphology of the natural reserve “Meteoryt Morasko”, Planetary and Space Science, 49, s. 749–753.
  • Stankowski W. 2009, Meteoryt Morasko Osobliwość obszaru Poznania, Wydawnictwa Naukowe UAM, Poznań.
  • Szczuciński W., Muszynski A., 2020, Meteoryty, kratery uderzeniowe i inne ślady kosmicznej katastrofy w rejonie Moraska pod Poznaniem, Przegląd Geologiczny, 68(8), s. 637–644.
  • Walesiak T., 2016, Analiza cech impaktu ukośnego na przykładzie struktur Porządzie, Jaszczułty i Ochudno, Acta Soc. Metheor. Polon., 7, s. 144–150.
  • Walesiak T., 2017, Kratery Morasko w świetle wiedzy na temat ukośnych impaktów, Acta Soc. Metheor. Polon., 8, s. 149–168.
  • Włodarski W., Papis J., Szczuciński W., 2017, Morphology of the Morasko crater field (western Poland): Influences of pre-impact topography, meteoroid impact processes, and post-impact alterations, Geomorphology, 295, s. 586–597.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-issn-2080-5497-year-2021-issue-12-article-bdef6bde-9af6-3c40-bd1e-a8420b5dba52
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.