Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 12 | 58-72

Article title

Notes on some impact rocks from the Janisjarvi structure, Karelia, Russia

Authors

Content

Title variants

PL
Uwagi o niektórych skałach uderzeniowych ze struktury Janisjarvi, Karelia, Rosja

Languages of publication

EN

Abstracts

EN
The Janisjarvi impact structure is located on the northern edge of Ladoga Lake, in Karelia, Russia. This research was carried out to study the biotite-quartz-feldspar-garnet-staurolite schist and several impact-metamorphosed rocks. In schist, biotite inclusions in garnet, pleochroic fields in biotite and asymmetry in the staurolite-biotite contact were observed. These characteristics were related to regional metamorphism of the target rock, and impact-induced features were not detected. No ‘kinky’ bands were observed in biotite. Fluidal structures and undulose extinction were rare in the analysed specimens. Injections of the tagamite melt into the clasts of cataclased recrystallising glass were noted. Fine-grained grey impact rock was cemented by a glassy micro-net with specimens of recrystallising quartz paramorphosis. In most of the analysed impactites, isotropic spherules and ‘ballen quartz’ structures, as well as sets of PDF (planar deformation features) and PF (planar fractures) in tagamite and quartz paramorphosis specimens were recognised. Except in schist, dynamic recrystallisation by ‘boundary migration’ was common. Secondary mineralisations were found for iron oxides, chlorite and calcite.
PL
Struktura uderzeniowa Janisjarvi znajduje się na północnym skraju jeziora Ładoga w rosyjskiej Karelii. Analizowano łupek typu biotyt-kwarc-skaleń-granat-staurolit ze skał podłoża struktury oraz kilka skał poddanych metamorfozie uderzeniowej. W łupku odkryto inkluzje biotytowe w granacie, pola pleochroiczne w biotycie i asymetrię kontaktu staurolit-biotyt. W biotycie nie zaobserwowano pasm typu ‘kinky’. Struktury fluidalne i faliste wygaszanie światła były rzadkie w analizowanych okazach. Odnotowano injekcje stopu tagamitu w klasty skataklazowanego rekrystalizującego szkliwa. Okaz rekrystalizującej paramorfozy kwarcu był scementowany z drobnoziarnistą skałą impaktową mikrosiecią szkliwa. W większości analizowanych impaktytów rozpoznano izotropowe sferule i struktury ’kwarcu groniastego’, a w tagamicie i paramorfozach kwarcu także od jednego do trzech zestawów lameli deformacji planarnych (PDF) oraz spękania planarne (PF). Spękania planarne były znacznie rzadsze niż deformacje i powstawały w stadium postimpaktu. Z wyjątkiem łupku, dynamiczna rekrystalizacja poprzez „migrację falistych granic ziarn” była powszechna. Stwierdzono wtórne mineralizacje tlenków żelaza, chlorytu i kalcytu.

Discipline

Year

Volume

12

Pages

58-72

Physical description

Dates

published
2021

Contributors

  • Institute of Environmental Biology, University of Wrocław

References

  • Alexopoulos J.S., Grieve R.A.F., Robertson P.B., 1987, Microscopic lamellar deformation features in quartz from different geologic environments, Lunar and Planetary Science Conference, 18, 19–20.
  • Borkowska M., Smulikowski K., 1973, Minerały skałotwórcze, Wydawnictwa Geologiczne, Warszawa.
  • Dempster T.J., Hay D.C., Gordon S.H., Kelly N.M., 2008, Micro-zircon: origin and evolution during metamorphism, Journal of Metamorphic Geology, 26, 499–507. doi: 10.1111/j.1525-1314.2008.00772.x
  • Feldman V.I., 1994, The conditions of shock metamorphism. In: B.O. Dressier, R.A.F. Grieve, V.L. Sharpton (Eds) Large meteorite impacts and planetary evolution, Geological Society of America, Boulder Colorado, Special Paper 293, p. 121–132.
  • Feldman V.I., Granovsky L.B., Sazonova L.V., Nikishina N.N., Butenko T.G., Naumova I.G., 1979, Some peculiarities of geochemistry of impactites of Janisjarvi, S-W Karelia, and Kara, Polar Ural, astroblemes, Lunar and Planetary Science, 10, 382–384.
  • Ferrie`re L., Koeberl C., Libowitzky E., Reimold W.U., Greshake A., Brandstätter F., 2010a, Ballen quartz and cristobalite in impactites: new investigations, in: R.L. Gibson, W.U. Reimold (Eds) Large Meteorite Impacts and Planetary Evolution IV, Geological Society of America, Special Paper 465, p. 609–618. doi: 10.1130/2010.2465(29).
  • Ferrie`re L., Raiskila S., Osinski G.R., Pesonen L.J., Lehtinen M., 2010b, The Keurusselkä impact structure, Finland—Impact origin confirmed by characterization of planar deformation features in quartz grains, Meteoritics and Planetary Science, 45, 434–446. doi: 10.1111/j.1945-5100.2010.01032.x
  • Hamers M.F., Drury M.R., 2011, Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz, Meteoritics and Planetary Science, 46, 1814–1831. doi: 10.1111/j.1945-5100.2011.01295.x
  • Jackson J.C., Horton J.W. Jr., Chou I-M., Belkin H.E., 2016, Coesite in suevites from the Chesa-peake Bay impact structure, Meteoritics and Planetary Science, 51, 946–965.
  • Jourdan F., Renne P.R., Reimold W.U., 2008, High-precision 40Ar/39Ar age of the Jänisjärvi impact structure (Russia), Earth and Planetary Science Letters, 265, 438–449.
  • Koljonen T., Rosenberg R.J., 1976, Major elements and REE in tektites and three probable shock-metamorphic rock series of the Baltic shield, Geochemical Journal, 10, 1–11.
  • Kosina R., 2017a, Uwagi o zmienności suewitów, Acta Societatis Metheoriticae Polonorum, 8, 84–99.
  • Kosina R., 2017b, Impaktyty astroblemy Ilińce, Ukraina, Acta Societatis Metheoriticae Polonorum, 8, 73–83.
  • Kosina R., 2019. Skały impaktowe struktury Puczeż-Katunki, platforma wschodnio-europejska, Rosja, Acta Societatis Metheoriticae Polonorum, 10, 74–91.
  • Kotova L.N., Kotov A.B., Glebovitskii V.A., Podkovyrov V.N., Savatenkov V.M., 2009, Source rocks and provenances of the Ladoga Group siliciclastic metasediments (Svecofennian Foldbelt, Baltic Shield): Results of geochemical and Sm-Nd isotopic study, Stratigraphy and Geological Correlation, 17, 1–19.
  • Kozlov E.A., Zhugin Y.N., Sazonova L.V., Fel’dman V.I., 2002, Migration of chemical components of minerals under shock-wave loading of Janisjarvi astrobleme target rocks (Kareliya, Russia), Lunar and Planetary Science, 33, 1050.
  • Larionova Y., Samsonov A., Sizova E., 2006, Tagamites of the Yanis-Yarvi crater (Karelia, Russia): an example of non-equilibrated impact melt?, Lunar and Planetary Science, 37, 1373.
  • Masaitis V.L., 1999, Impact structures of northeastern Eurasia: the territories of Russia and adjacent countries, Meteoritics and Planetary Science, 34, 691–711.
  • Müller N., Hartung J.B., Jessberger E.K., Reimold W.U., 1990, 40Ar-39Ar ages of Dellen, Jänisjärvi, and Sääksjärvi impact craters, Meteoritics, 25, 1–10.
  • Naumov M.V., 1993, Zonation of hydrothermal alteration in the central uplift of the Puchezh-Ka-tunki astrobleme, Meteoritics, 28, 408–409.
  • Osinski G.R., 2005, Hydrothermal activity associated with the Ries impact event, Germany, Geo-fluids, 5, 202–220.
  • Osinski G.R., 2007, Impact metamorphism of CaCO3-bearing sandstones at the Haughton structure, Canada, Meteoritics and Planetary Science, 42, 1945–1960.
  • Passchier C.W., Trouw R.A.J., 2005, Microtectonics, Springer-Verlag, Berlin, Heidelberg.
  • Raitala J., 1997, Impact vs. post-impact metamorphosis in impactite garnet, Lunar and Planetary Science, 28, 1151–1152.
  • Salminen J., Donadini F., Pesonen L.J., Masaitis V.L., Naumov M.V., 2006, Paleomagnetism and petrophysics of the Jänisjärvi impact structure, Russian Karelia, Meteoritics and Planetary Science, 41, 1853–1870.
  • Sazonova L.V., 1988, Shock metamorphism of ilmenite in Janisjarvi astrobleme (Karelia, USSR), Lunar and Planetary Science Conference, 19, 1017–1018.
  • Sears D.W.G., Huang S., Akridge G., Benoit P., 1996, Glassy spherules in suevite from the Reis crater, Germany, with implications for the formation of meteoritic chondrules, Lunar and Planetary Science, 27, 1165–1166.
  • Sergienko E.S., Kosterov A., Kharitonskii P.V., 2017, Two types of impact melts with contrasting magnetic mineralogy from Jänisjärvi impact structure, Russian Karelia, Geophys. J. Int., 209, 1080–1094. doi: 10.1093/gji/ggx077
  • Trepmann C.A., Dellefant F., Kaliwoda M., Hess K-U., Schmahl W.W., Höolzl S., 2020, Quartz and cristobalite ballen in impact melt rocks from the Ries impact structure, Germany, formed by dehydration of shock-generated amorphous phases, Meteoritics and Planetary Science, 55, 2360–2374.
  • Wittmann A., Goderis S., Claeys P., Vanhaecke F., Deutsch A., Adolph L., 2013, Petrology of impactites from El’gygytgyn crater: breccias in ICDP-drill core 1C, glassy impact melt rocks and spherules, Meteoritics and Planetary Science, 48, 1199–1235. doi: 10.1111/maps.12019

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.ojs-issn-2080-5497-year-2021-issue-12-article-b558d00a-43f7-3637-a0f6-40b2aaf29ac1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.