Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 56 | 4 | 235-243

Article title

Low-level genetic diversity of opalinid morphotypes from the digestive tract of Hoplobatrachus rugulosus (Batrachia, Amphibia) in Thailand

Content

Title variants

Languages of publication

Abstracts

EN
Opaline is an unusual group of protists, characterized by the presence of flagella covering their whole body. They reside in the intestinal tracts of various animals, most notably amphibians. While there is a wealth of data regarding the morphological features of opalines, molecular data are extremely sparse. Consequently, the extent of diversity of this understudied group remains unknown. Here, we examine opalines from the intestinal tract of the amphibian Hoplobatrachus rugulosus in Thailand. We provide micrographs obtained from light and scanning electron microscopy of various opalinid morphotypes. Furthermore, we enrich the database of opaline sequences by providing new molecular data of the small subunit ribosomal DNA gene of these species. In our phylogenetic analyses, the newly derived sequences form a cluster sister to Protoopalina.

Year

Volume

56

Issue

4

Pages

235-243

Physical description

Dates

published
2017

Contributors

  • Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
  • School of Science, Mae Fah Luang University, Chiang Rai, Thailand
  • Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
  • School of Science, Mae Fah Luang University, Chiang Rai, Thailand

References

  • Alfellani M. A., Taner-Mulla D., Jacob A. S., Imeede C. A., Yoshikawa H., Stensvold C. R., Clark C. G. (2013) Genetic diversity of Blastocystis in livestock and zoo animals. Protist 164: 497–509
  • Amiet J.-L., Affa’a F.-M. (1985) A propos des strategies d’infestation chez les protozoaires parasites ou endocommensaux des amphibiens anoures du Cameroun. Rev. Ecol. (Terre Vie). 40: 389–398
  • Capella-Gutierrez S., Silla-Martinez J. M., Gabaldon T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973
  • Delvinquier B. L. J., Desser S. S. (1996) Opalinidae (Sarcomastigophora) in North American Amphibia. Genus Opalina Purkinje and Valentin, 1835. Syst. Parasitol. 33: 33–51
  • Delvinquier B. L. J., Patterson D. J. (1993) The Opalines. In: Kreier, J. P., Baker, J. R. (Eds), Parasitic Protozoa. Academic Press, San Diego, pp: 247–325
  • Delvinquier B. L. J., Markus M. B., Passmore N. I. (1991a) Opalinidae in African Anura I. Genus Opalina. Syst. Parasitol. 19: 119–146
  • Delvinquier B. L. J., Markus M. B., Passmore N. I. (1991b) Opalinidae in African Anura II. Genera Protozelleriella n. g. and Zelleriella. Syst. Parasitol. 19: 159–185
  • Delvinquier B. L. J., Markus M. B., Passmore N. I. (1992) Opalinidae in African Anura III. Genus Cepedea. Syst. Parasitol. 24: 53–80
  • Delvinquier B. L. J., Markus M. B., Passmore N. I. (1995) Opalinidae in African Anura IV. Genus Protoopalina. Syst. Parasitol. 30: 81–120
  • Evans K. M., Wortley A. H., Simpson G. E., Chepurnov V. A., Man D. G. (2008) A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). J. Phycol. 
  • Finlay B. J., Esteban G. F., Brown S., Fenchel T., Hoef-Emden K. (2006) Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist. 157: 377–390
  • Gentekaki E., Lynn D. H. (2010) Evidence for cryptic speciation in Carchesium polypinum Linnaeus, 1758 (Ciliophora: Peritrichia) inferred from mitochondrial, nuclear and morphological markers. J. Eukaryot. Microbiol. 57: 508–519
  • Katoh K., Misawa K., Kuma K. I., Miyata T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059–3066
  • Katz L. A., de Berardinis J., Hall M. S., Kovner A. M., Dunthorn M., Muse S. V. (2011) Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinata. J. Mol. Evol. 73: 266–272
  • Kimura M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120
  • Kostka M., Hampl V., Cepicka I., Flegr J. (2004) Phylogenetic position of Protoopalina intestinalis based on SSU rRNA gene sequence. Mol. Phylogenet. Evol. 33: 220–224
  • Lahr D. J. G., Laughinghouse H. D., Oliverio A. M., Gao F., Katz L. A. (2014) How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. Bioessays 36: 950–959
  • Maslov D. A., Votypka J., Yurchenko V., Lukes J. (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 29: 43–52
  • McCallum F., Maden B. E. H. (1985) Human 18S ribosomal RNA sequence inferred from DNA sequence. Biochem. J. 232: 725–733
  • Medlin L., Elwood H. J., Stickel S., Sogin M. L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499
  • Miller M. A., Pfeiffer W., Schwartz T. (2010) “Creating the CIPRES science gateway for inference of large phylogenetic trees” in proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA pp: 1–8
  • Mohammad K. N., Badrul M. M., Mohamad N., Zainal-Abidin A. H. (2013) Protozoan parasites of four species of wild anurans from a local zoo in Malaysia. Trop. Biomed. 30: 615–620
  • Nishi A., Ishida K., Endoh H. (2005) Reevaluation of the evolutionary position of opalinids based on 18S rDNA and α- and β-tubulin gene phylogenies. J. Mol. Evol. 60: 695–705
  • Ronquist F., Huelsenbeck J. P. (2003) MrBayes3, Bayesian inference under mixed models. Bioinformatics 19: 1572–1574
  • Saez A. G., Probert I., Geisen M., Quinn P., Young J. R., Medlin L. K. (2003). Pseudo-cryptic speciation in coccolithophores. Proc. Natl. Acad. Sci. U.S.A. 100: 7163–7168
  • Sanchez R., Serra F., Tarraga J., Medina I, Carbonell J., Pulido L., de Maria A., Capella-Gutierrez S., Huerta-Cepas J., Gabaldon T., Dopazo J., Dopazo H. (2011) Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res. 39: W470–W474
  • Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690
  • Stensvold C. R., Alfellani M., Clark G. C. (2012) Levels of genetic diversity vary dramatically between Blastocystis subtypes. Infect. Genet. Evol. 12: 263–273
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28: 2731–2739
  • Yang W. C. T. (1960) On the continuous culture of opalinids. J. Parasitol. 46: 32
  • Yurchenko V., Lukes J., Tesarova M., Jirku M., Maslov D. A. (2008) Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist 159: 99–114

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
52399191

YADDA identifier

bwmeta1.element.ojs-doi-10_4467_16890027AP_17_021_7823
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.