Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 75 | 6 | 1339-1346

Article title

Quercetin influences BSA alpha-helical structures of native, ACR- and NaNO2-modified BSAs

Content

Title variants

Languages of publication

EN

Abstracts

EN
Quercetin (QUE) is a plant flavonoid with a multifarious spectrum of properties. It is a prominent component of the human diet, considered to be safe and beneficial for human health. Acrylamide (ACR) and sodium nitrate III (NaNO2) are also present in the diet and may demonstrate adverse and toxic effects on the macromolecules and tissues of the human organism. Albumin, the most abundant blood protein, is the most susceptible to the action of various exogenous factors, which may lead to structural damage and functional disturbances. The aim of this study was to estimate ACR- and NaNO2-induced changes in the secondary structure of bovine serum albumin (BSA), using circular dichroism (CD), and to determine the impact of quercetin on these modifications. BSA was incubated with ACR and NaNO2 solutions in the absence and presence of QUE in two different concentrations (3 mM and 500 µM), and changes in albumin alpha-helical structure were determined by CD. BSA secondary structure was vulnerable to alterations upon treatment with acrylamide and NaNO2, as well as quercetin. QUE, depending on concentration and incubation time, caused a decrease of around 13-19% in the alpha-helix content of BSA molecules, but also prevented the changes in the protein alpha-helical structure initiated by ACR and NaNO2. The most spectacular inhibition was revealed for QUE in lower concentrations after 24h of incubation with NaNO2. Although QUE reveals protective effect towards albumin modifications, it is difficult to unambiguously define whether this effect is advantageous, because quercetin itself causes alterations in BSA structure.

Year

Volume

75

Issue

6

Pages

1339-1346

Physical description

Dates

published
2018-12-31

References

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_32383_appdr_89724
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.