Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 2 | 175-184

Article title

Mechanizmy adaptacyjne umożliwiające życie bakterii w wysokich temperaturach

Content

Title variants

EN
The mechanisms of adaptation allowing bacteria to survive in high temperatures

Languages of publication

PL EN

Abstracts

PL
Z antropocentrycznego punktu widzenia, środowiska cechujące się wysokimi temperaturami opisywane są jako ekstremalne. Pierwotnie uważano, że są one zbyt niekorzystne dla rozwoju życia, jednakże wiele badań naukowych dowiodło, iż istnieje spora grupa mikroorganizmów, które mogą przetrwać w tak trudnych warunkach. Jednakże aby było to możliwe, organizmy te wykształciły wiele mechanizmów i strategii ochrony komórki przed niekorzystnymi warunkami środowiska. Zaliczyć tu można: produkcję białek szoku cieplnego, stabilizację struktury DNA, błyskawiczną resyntezę ATP, aminokwasów i innych termolabilnych składników komórki, syntezę trehalozy i innych cząsteczek stabilizujących struktury komórkowe, zwiększoną syntezę specyficznych proteaz, zastąpienie nukleotydów nikotynamidowych przez stabilniejszą ferredoksynę czy zmianę ekspresji genów w komórce. Enzymy produkowane przez mikroorganizmy termofilne są obecnie źródłem intensywnych badań, głównie ze względu na swoje wyjątkowe właściwości i szerokie zastosowanie w przemyśle.
EN
From the anthropocentric point of view, the environments that are characterized by high temperatures have been identified as extreme ones. Originally, they were considered as too extreme to allow any organism to survive. However, later investigations have revealed that there exists a fairly large group of microorganisms thriving very well in these conditions. In order to withstand high temperatures these microorganisms have developed numerous mechanisms and strategies for protecting their cells. They include inter alia production of heat shock proteins, stabilization of the double-stranded DNA structure, rapid re-synthesis of ATP, certain amino acids and other heat-labile components of the cell, enhanced synthesis of: trehalose and other molecules stabilizing cell structures, and specific proteases hydrolyzing denatured proteins, substitution of termo-labile nicotinamide adenine dinucleotides by more thermally stable ferredoxin, as well as modifications of gene expression. Presently, enzymes produced by thermophilic microorganisms are an important area of research owing to their unique properties and wide industrial applications.

Journal

Year

Volume

66

Issue

2

Pages

175-184

Physical description

Dates

published
2017

Contributors

author
  • Zakład Biotechnologii i Bioinformatyki, Wydział Chemiczny, Politechnika Rzeszowska im. Ignacego Łukasiewicza, Powstańców Warszawy 6, 35-959 Rzeszów, Polska
  • Department of Biotechnology and Bioinformatic, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Zakład Biotechnologii i Bioinformatyki, Wydział Chemiczny, Politechnika Rzeszowska im. Ignacego Łukasiewicza, Powstańców Warszawy 6, 35-959 Rzeszów, Polska
  • Department of Biotechnology and Bioinformatic, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland

References

  • Adams M. W. W., Kelly R. M., 1994. Thermostability and thermoactivity of enzymes from hyperthermophilic archaea. Bioorgan. Med. Chem. 7, 659-667.
  • Adams M. W. W., Kletzin A., 1996. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolism of hyperthermophilic archaea. Adv. Protein Chem. 48, 101-141.
  • Andrade C. M. M. C., Pereira Jr. N., Antranikian G., 1999. Extremely thermophilic microorganisms and their polymer-hydrolytic enzymes. Rev. Microbiol. 30, 287-298.
  • Berg J. M., Tymoczko J. L., Stryer L., 2007. Biochemia. Wydawnictwo Naukowe PWN, Warszawa.
  • Chan C. T. Y., Deng W., Li F., DeMott M. S., Babu R. I., Begley T. J., Dedon P. C., 2015. Highly predictive reprogramming of tRNA modifications is linked to selective expression of codon-biased genes. Chem. Res. Toxicol. 28, 978-988.
  • Chatterjea M. N., Shinde R., 2012. Textbook of Medical Biochemistry. Jaypee Brothers Medical Publishers, New Delhi, Panama City, London.
  • Danson M. J., 1988. Archaebacteria: The comparative enzymology of their central metabolic pathways. Adv. Microb. Physiol. 29, 165-169.
  • Edmonds C. G., Crain P. F., Gupta R., Hashizume T., Hocart C. H., Kowalak J. A., Pomerantz S. C., Statter K. O., McCloskey J. A., 1991. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J. Bacteriol. 173, 3138-3148.
  • Faria T. Q., Lima J. C., Bastos M., Macanita A. L., Santos H., 2004. Protein stabilization by osmolytes from hyperthermophiles. Effect of mannosylglycerate on the thermal unfolding of recombinant Nuclease A from Staphylococcus Aureus studied by picosecond time-resolved fluorescence and calorimetry. J. Biol. Chem. 279, 48680-48691.
  • Grayling R. A., Sandman K., Reeve J. N., 1994. Archaeal DNA binding proteins and chromosome structure. Syst. Appl. Microbiol. 16, 582-590.
  • Grayling R. A., Sandman K., Reeve J. N., 1996. DNA stability and DNA binding proteins. Adv. Protein Chem. 48, 437-467.
  • Grogan D. W., 2000. The question of DNA repair in hyperthermophilic archaea. Trends Microbiol. 8, 180-185.
  • Grzybowska B., Synowiecki J., 2003. Niektóre przyczyny unikatowej oporności cieplnej hipertermofili. Biotechnologia 61, 192-205.
  • Hickey D. A., Singer G. A., 2004. Genomic and proteomic adaptations to growth at high temperature. Genome Biol. 5, 117
  • Hsieh T. S., Plank J. L., 2006. Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate. J. Biol. Chem. 281, 5640-5647
  • Kampmann M., Stock D., 2004. Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. Nucleic Acids Res. 6, 3537-3545.
  • Kikani B. A., Shukla R. J., Singh S. P., 2010. Biocatalytic potential of thermophilic bacteria and actinomycetes. [W:] Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Mendez-Vilas A. (red.). Formatex Publishers, Spain, 1000-1007.
  • Kim K., Okanishi H., Masui R., Harada A., Ueyama N., Kuramitsu S., 2012. Whole-cell proteome reference maps of an extreme thermophile, Thermus thermophilus HB8. Proteomics 12, 3063-3068.
  • Konings W. N., Albers S. V., Koning S., Driessen A. J., 2002. The cell membrane plays crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81, 61-72.
  • Kumar S., Nussinov R., 2001. How do thermophilic proteins deal with heat? CMLS-Cell Mol. Life S 58, 1216-1233.
  • Laksanalamai P., Robb F. T., 2004. Small heat shock proteins from extremophiles: a review. Extremophiles 8, 1-11.
  • Lamosa P., Turner D. L., Ventura R., Maycock C., Santos H., 2003. Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. Eur. J. Biochem. 270, 4606-4614.
  • Lewin A., Wentzel A., Valla S., 2013. Metagenomics of microbial life in extreme temperature environments. Curr. Opin. Biotechnol. 24, 516-525.
  • López-Díez E. C., Bone S., 2004. The interaction of trypsin with trehalose: an investigation of protein preservation mechanisms. Biochim. Biophys. Acta 1673, 139-148.
  • Lu J. L., Hu X. H., Hu D. G., 2012. A new hybrid fractal algorithm for predicting thermophilic nucleotide sequences. J. Theor. Biol. 293, 74-81.
  • Mahale K. N., Kempraj V., Dasgupta D., 2012. Does the growth temperature of a prokaryote influence the purine content of its mRNAs? Gene 497, 83-89.
  • Maier R. J., 1996. Respiratory metabolism in hyperthermophilic organisms: hydrogenases, sulfur reductases, and electron transport factors that function at temperatures exceeding 100°C. Adv. Protein Chem. 48, 35-99.
  • de Nadal E., Ammerer G., Posas F., 2011. Controlling gene expression in response to stress. Nat. Rev. Genet. 12, 833-845.
  • Niehaus F., Bertoldo C., Kahler M., Antranikian G., 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Micriobiol. Biot. 51, 711-729.
  • Ohara N., Tabira Y., Ohara N., Yamada T., 2001. Learning from bacteria: molecular chaperones in ribosomes and thermophilic adaptation. [W:] Thermotherapy for neoplasia, inflammation, and pain. Kosaka M., Sugahara T., Schmidt K. L., Simon E. (red.). Springer, Tokyo, Berlin, Heidelberg, New York, 346-354.
  • Ohtake S., Wang Y. J., 2011. Trehalose: current use and future applications. J. Pharm. Sci. 100, 2020-2053.
  • Rossi M., Guagliardi A., 2009. Heat-shock response in thermophilic microorganisms. [W:] Extremophiles. Gerday C., Glansdorff N. (red.). EOLSS, Paris, 282-293.
  • Santos H., da Costa M. S., 2002. Compatible solutes of organisms that live in hot saline environments. Environ. Microbiol. 4, 501-509.
  • Singer G. A. C., Hickey D. A., 2003. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317, 39-47.
  • Singer M. A., Lindquist S., 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639-648.
  • Sinkiewicz I., Synowiecki J., 2009. Charakterystyka bakterii rodzaju Thermus i ich przydatność w biotechnologii. Biotechnologia 3, 148-162.
  • Stetter K. O., 1999. Extremophiles and their adaptations to hot environment. FEBS Lett. 452, 22-25.
  • Sun N., Beck F., Knispel R. W., Siedler F., Scheffer B., Nickell S., Baumeister W., Nagy I., 2007. Proteomics analysis of Thermoplasma acidophilum with a focus on protein complexes. Mol. Cell. Proteom. 6, 492-502.
  • Synowiecki J., 1998. Otrzymywanie, właściwości i przydatność termostabilnych enzymów drobnoustrojowych. Biotechnologia 3, 98-105.
  • Synowiecki J., 2010. Some applications of thermophiles and their enzymes for protein processing. Afr. J. Biotechnol. 9, 7020-7025.
  • Trent J. D., 1996. A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol. Rev. 18, 249-258.
  • Turner P., Mamo G., Karlsson E. N., 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6, 9.
  • van de Vossenberg J. L. C. M., Driessen A. J. M., Konings W. N., 1988. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2, 163-170.
  • Wang J., Xue Y., Feng X., Li X., Wang H., Li W., Zhao C., Cheng X., Ma Y., Zhou P., Yin J., Bhatnagar A., Wang R., Liu S., 2004. An analysis of the proteomic profile for Thermoanaerobacter tengcongensis under optimal culture conditions. Proteomics 4, 136-150.
  • Wang J., Zhao C., Meng B., Xie J., Zhou C., Chen X., Zhao K., Shao J., Xue Y., Xu N., Ma Y., Liu S., 2007. The proteomic alterations of Thermoanaerobacter tengcongensis cultured at different temperatures. Proteomics 7, 1409-1419.
  • Wang Z., Tong W., Wang Q., Bai X., Chen Z., Zhao J., Xu N., Liu S., 2012. The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One 7, e46463.
  • Willey J. M., Sherwood L. M., Woolverton C. J., 2014. Prescott's Microbiology, Ninth edition. McGraw-Hill Higher Education, New York.
  • Wolska-Mitaszko B., Molestak E., 2005. Metabolizm trehalozy u roślin. Post. Biol. Kom. 32, 181-194.
  • Wyżewski Z., Gregorczyk K. P., Szulc-Dąbrowska L., Struzik J., Szczepanowska J., Niemiałtowski M., 2014. Współdziałanie białek szoku cieplnego w organizowaniu struktury przestrzennej białek. Post. Hig. Med. Dosw. 68, 793-807.
  • Zielińska M., Hozyasz K. K., 2012. Trehaloza - dwucukier o unikatowych właściwościach. Pediatria Polska 87, 569-573.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p175kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.