Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 64 | 1 | 57-69

Article title

Współczesne metody stosowane w analizie biodeterioracji obiektów zabytkowych

Content

Title variants

Languages of publication

PL EN

Abstracts

PL
Interpretacja zjawiska biodeterioracji obiektów muzealnych wymaga podjęcia działań obejmujących identyfikację dominujących gatunków mikroorganizmów oraz ustalenie związku pomiędzy cechami metabolicznymi zidentyfikowanych mikroorganizmów a właściwościami chemicznymi badanych materiałów. Z tego powodu konieczność opracowywania i wdrażania nowych metod badawczych wydaje się nieodzowna. Do precyzyjnego określenia przynależności taksonomicznej drobnoustrojów pochodzących z badanej próby, również tych niehodowalnych w warunkach laboratoryjnych, przyczynił się rozwój metod molekularnych: genetycznego fingerprintingu (m.in. DGGE/TGGE, T-RFLP, SSCP, ARISA, ARDRA), sekwencjonowania rRNA, narzędzi bioinformatycznych, czy metagenomiki. Oznaczenie określonych biomolekuł na powierzchniach zabytkowych, będących następstwem rozwoju drobnoustrojów, oparte jest na stosunkowo młodej dyscyplinie, metabolomice. Całość dopełniają metody analityczne (takie jak np. SEM, EDX, XRD, FTIR), dzięki którym można określić skutki interakcji drobnoustrojów z materiałem zabytkowym oraz mechanizm biodeterioracji. W artykule przedstawiono i scharakteryzowano współczesne techniki pozwalające ocenić zjawisko biodeterioracji materiałów zabytkowych.
EN
Incomplete knowledge of agents responsible for biodeterioration of the museum objects prevents from introducing effective restoration strategies. For proper conservation approaches it is necessary to identify complete microbial consortium inhabiting a given object, as well as, to find connections between products of microbial metabolism and chemical features of the material the object is made of. Therefore, development and application new methods for the study of biodeterioration of historical objects seems to be indispensable. To precisely determine the taxonomic position of microorganisms inhabiting museum objects, the evaluation of different existing molecular techniques is necessary, for instance genetic fingerprinting, ribosomal RNA gene sequencing, bioinformatics or metagenomics. Identification of microbial metabolic products is possible with the help of recently emerged approach, metabolomics. In this paper some current research techniques in use for the evaluation of biodeterioration of historical objects are presented.

Keywords

Journal

Year

Volume

64

Issue

1

Pages

57-69

Physical description

Dates

published
2015

Contributors

  • Instytut Technologii Fermentacji i Mikrobiologii, Politechnika Łódzka, Wólczańska 171/173, 90-924 Łódź,, Polska
author
  • Instytut Technologii Fermentacji i Mikrobiologii, Politechnika Łódzka, Wólczańska 171/173, 90-924 Łódź,, Polska
  • Instytut Technologii Fermentacji i Mikrobiologii, Politechnika Łódzka, Wólczańska 171/173, 90-924 Łódź,, Polska

References

  • Allsopp D., 2011. Worldwide wastage: the economics of biodeterioration. Microbiol. Today 38, 150-153.
  • Atkins S. D., Clark I. M., 2004. Fungal molecular diagnostics: a mini review. J. Appl. Genet. 45, 3-15.
  • Beech I. B., 2004. Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study. Int. Biodeter. Biodegrad. 53, 177-183.
  • Berdoulay M., Salvado J. C., 2009. Genetic characterization of microbial communities living at the surface of building stones. Lett. Appl. Microbiol. 49, 311-316.
  • Capitelli F., Principi P., Pedrazzani R., Toniolo L., Sorlini C., 2007. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci. Total Environ. 385, 172-181.
  • Capodicasa S., Fedi S., Porcelli A. M., Zennoni D., 2010. The microbial community dwelling on a biodeteriorated 16th century painting. Int. Biodeter. Biodegrad. 64, 727-733.
  • Clarridge J. E., 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17, 840-862.
  • Cutler N. A., Oliver A. E., Vilesa H. A., Ahmada S., Whiteley A. S., 2013. The characterisation of eukaryotic microbial communities on sandstone buildings in Belfast, UK, using T-RFLP and 454 pyrosequencing. Int. Biodeter. Biodegrad. 82, 124-133.
  • Cuzman O. A., 2009. Biofilms on exposed monumental stones: mechanism of formation and development of new control methods. Praca doktorska, Uniwersytet Boloński, Bolonia.
  • Czaczyk K., Myszka K., 2007. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol. J. Environ. Stud. 16, 799-806.
  • Dakal T. C., Arora P. K., 2012. Evaluation of potential of molecular and physical techniques in studying biodeterioration. Rev. Environ. Sci. Biotechnol. 11, 71-104.
  • Deja-Sikora E., Sikora M., Gołębiewski M., Tretyn A., 2007. Biblioteki metagenomowe jako źródło genów przydatnych w biotechnologii. Biotechnologia 4, 125-139.
  • Fisher M. M., Triplett E. W., 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65, 4630-4636.
  • Gao D., Tao Y., 2012. Current molecular biologic techniques for characterizing environmental microbial community. Front. Environ. Sci. Engineer. 6, 82-97.
  • Gaylarde C. C., Morton L. H. G., Loh K., Shirakawa M. A., 2011. Biodeterioration of external architectural paint films - a review. Int. Biodeter. Biodegrad. 65, 1189-1198.
  • González J. M., 2002. Overview on existing molecular techniques with potential interest in cultural heritage. Coalition 5, 4-7.
  • González J. M., Saiz-Jiménez C., 2005. Unknown microbial communities on rock art painting. Consequences for conservation and future perspectives. Coalition 10, 4-7.
  • Gorbushina A. A., Heyrman J., Dornieden T., Gonzales-Delvalle M., Krumbein W. E., Laiz L., Petersen K., Saiz-Jiménez C., Swings J., 2004. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greenee - Kreiensen, Germany). Int. Biodeter. Biodegrad. 53, 13-24.
  • Guiamet P., Borrego S., Lavin P., Perdomo I., Gómez De Saravia S., 2011. Biofouling and biodeterioration in materials stored at the Historical Archive of the Museum of La Plata, Argentine and the National Archive of the Republic of Cuba. Colloids Surfaces B: Biointerfac. 85, 229-234.
  • Gutarowska B., Żakowska Z., 2002. Elaboration and application of mathematical model for estimation of mould contamination of some building materials based on ergosterol content determination. Int. Biodeter. Biodegrad. 49, 299-305.
  • Handelsman J., Rondon J., Brady M. R., Clardy S. F., Goodman R. M., 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, 245-249.
  • Helms A. C., Martiny A. C., Hofman-Bang J., Ahring B. K., Kilstrup M., 2004. Identification of bacterial cultures from archeological wood using molecular biological techniques. Int. Biodeter. Biodegrad. 53, 79-88.
  • Herrera L. K., Videla H. A., 2009. Surface analysis and material characterization for the study of biodeterioration and weathering effects on cultural property. Int. Biodeter. Biodegrad. 63, 813-822.
  • Heyrman J., Swings J., 2003. Modern diagnostic techniques on isolates. Coalition 6, 9-13.
  • Heyrman J., Balcaen A., De Vos P., Swings J., 2002. Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int. J. Systemat. Evolut. Microbiol. 52, 2049-2054.
  • Janda J. M., Abbot S. L., 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45, 2761-2764.
  • Kang Y. M., Prewitt M. L., Diehl S. V., 2009. Proteomics for biodeterioration of wood (Pinus taeda L.): Challenging analysis by 2-D PAGE and MALDI-TOF/TOF/MS. Int. Biodeter. Biodegrad. 63, 1036-1044.
  • Keer J. T., Birch L., 2003. Molecular methods for the assessment of bacterial viability. J. Microbiol. Meth. 53, 175-183.
  • Kim M., Morrison M., Yu Z., 2011. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J. Microbiol. Meth. 84, 81-87.
  • Kirk J. L., Beaudette L. A., Hart M., Moutoglis P., Klironomos J. N., Lee H., Trevors J. T., 2004. Methods of studying soil microbial diversity. J. Microbiol. Meth. 58, 169-188.
  • Korczyński J., 2013. Nowy wymiar mikroskopii - skanujący laserowy mikroskop konfokalny. Kosmos 62, 149-160.
  • Koubek J., Uhlik O., Jecna K., Junkova P., Vrkoslavova J., Lipov J., Kurzawova V., Macek T., Mackova M., 2012. Whole-cell MALDI-TOF: rapid screening method in environmental microbiology. Int. Biodeter. Biodegrad. 69, 82-86.
  • Kumari N., Srivastava A. K., Bhargava P., Rai L. C., 2009. Molecular approaches towards assessment of cyanobacterial biodiversity. Afr. J. Biotechnol. 18, 4284-4298.
  • Lan W., Hui L. H., Wang W. D., Katayama Y., Gu J. D., 2010. Microbial community analysis of fresh and old microbial biofilms on Bayon temple sandstone of Angkor Thom, Cambodia. Microb. Ecol. 60, 105-115.
  • López-Miras M., Piñar G., Romero-Noguera J., Bolívar-Galiano F. C., Ettenauer J., Sterflinger K., Martín-Sánchez I., 2013. Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29, 301-314.
  • Michaelsen A., Pinzari F., Ripka K., Lubitz W., Piñar G., 2006. Application of molecular techniques for identification of fungal communities colonizing paper material. Int. Biodeter. Biodegrad. 58, 133-141.
  • Michaelsen A., Piñar G., Montanari M., Pinzari F., 2009. Biodeterioration and restoration of a 16th - century book using a combination of conventional and molecular techniques: a case study. Int. Biodeter. Biodegrad. 63, 161-168.
  • Michaelsen A., Piñar G., Pinzari F., 2010. Molecular and microscopical investigation of the microflora inhabiting a deteriorated Italian manuscript dated from thirteenth century. Microb. Ecol. 60, 69-80.
  • Milanesi C., Baldi F., Borin S., Vignani R., Ciampolini F., Faleri C., Cresti M., 2006. Biodeterioration of fresco by biofilm forming bacteria. Int. Biodeter. Biodegrad. 57, 168-173.
  • Mocali S., Benedetti A., 2010. Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res. Microbiol. 161, 497-505.
  • Morey M., Férnandez-Marmiesse A., Castiñeiras D., Fraga J. M., Couce M. L., Cocho J. A., 2013. A glimpse into past, present, and future DNA sequencing. Mol. Genet. Metabol. 110, 3-24.
  • Muyzer G., 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317-322.
  • Muyzer G., Wall E. C., Uitterlinden A. G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction - amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
  • Müller E., Drewello U., Drewello R., Weißmann R., Wuertz S., 2001. In situ analysis of biofilms on historic window glass using confocal laser scanning microscopy. J. Cult. Herit. 2, 31-42.
  • Oliver J. D., 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43, 93-100.
  • Ortega-Morales O., Guezennec J., Hernández-Duque G., Gaylarde C. C., Gaylarde P. M., 2000. Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr. Microbiol. 40, 81-85.
  • Pandey A., Mann M., 2000. Proteomics to study genes and genomes. Nature 405, 837-846.
  • Pasanen A. L., Yli-Pietilä K., Pasanen P., Kalliokoski P., Tarhanen J., 1999. Ergosterol content in various fungal species and biocontaminated building materials. Appl. Environ. Microbiol. 65, 138-142.
  • Petrosino J. F., Highlander S., Luna R. A., Gibbs R. A., Versalovic J., 2009. Metagenomic pyrosequencing and microbial identification. Clin. Chem. 55, 856-866.
  • Piñar G., Garcia-Valles M., Gimento-Torrente D., Fernandez-Turiel J. L., Ettenauer J., Sterflinger K., 2013. Microscopic, chemical and molecular - biological investigation of the decayed medieval stained window glasses of two Catalonian churches. Int. Biodeter. Biodegrad. 84, 388-400.
  • Ranjard L., Poly F., Lata J. C., Mougel C., Thioulouse J., Nazaret S., 2001. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl. Environ. Microbiol. 67, 4479-4487.
  • Rastogi G., Sani K., 2011. Molecular techniques to assess microbial community structure, function and dynamics in the environment. [W]: Microbes and microbial technology: agricultural and environmental applications. Ahmad I., Ahmad F., Pichtel J. (red). Springer, New York, 29-57.
  • Ripka K., 2005. Identification of microorganisms on stone and mural paintings using molecular methods. Praca magisterska, Uniwersytet Wiedeński, Wiedeń.
  • Ronaghi M., 2001. Pyrosequencing Sheds Light on DNA Sequencing. Gen. Res. 11, 3-11.
  • Rölleke S., Muyzer G., Wawer C., Wanner G., Lubitz W., 1996. Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 62, 2059-2065.
  • Rosado T., Gil M., Mirão J., Candeias A., Calderia A. T., 2013. Oxolate biofilm formation in mural paintings due to microorganisms - a comprehensive study. Int. Biodeter. Biodegrad. 85, 1-7.
  • Santos C., Fraga M. E., Kozakiewicz Z., Lima N., 2010. Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res. Microbiol. 161, 168-175.
  • Sarró M. I., García A. M., Rivalta V. M., Moreno D. A., Arroyo I., 2006. Biodeterioration of the Lions Fountain at the Alhambra Palace, Granada (Spain). Build. Environ. 41, 1811-1820.
  • Schabereiter-Gurtner C., Piñar G., Lubitz W., Rölleke S., 2001. An advanced strategy to identify bacterial communities on art objects. J. Microbiol. Meth. 45, 77-87.
  • Schneider T., Riedel K., 2010. Environmental proteomics: analysis of structure and function of microbial communities. Proteomics 10, 785-798.
  • Shah N., Tang H., Doak T. G., Ye Y., 2011. Comparing bacterial communities inferred from 16S rRNA. Pacific Symposium on Biocomputing, 165-176.
  • Sprocati A. R., Alisi C., Tasso F., Vedovato E., Barbabietola N., Cremisini C., 2008. A microbiological survey of the Etruscan mercareccia tomb (Italy): contribution of microorganisms to deterioration and restoration. [W:] Materiały konferencyjne, 9th International Conference on NDT of Art. Jerozolima, Izrael, 1-9.
  • Steele H. L., Streit W. R., 2005. Metagenomics: advances in ecology and biotechnology. FEMS Microbiol. Lett. 247, 105-111.
  • Strzelczyk A. B., 2004. Observations on aesthetic and structural changes induced in Polish historic objects by microorganisms. Int. Biodeter. Biodegrad. 53, 151-156.
  • Tokarski C., Martin E., Rolando C., Cren-Olivé C., 2006. Identification of proteins in renaissance paintings by proteomics. Analyt. Chem. 78, 1494-1502.
  • Tomaselli L., Lamenti G., Tiano P., 2002. Chlorophyll fluorescence for evaluating biocide treatments against phototrophic biodeteriogens. Ann. Microbiol. 52, 197-206.
  • Urzì C., De Leo F., Donato P., La Cono V., 2003. Study of microbial communities colonizing hypogean monument surfaces using nondestructive and destructive sampling methods. [W:] Art, biology and conservation: biodeterioration of works of art. Koestler R. J., Koestler V. H., Charola A. L., Nieto-Fernandez F. E. (red.). The Metropolitan Museum of Art, Nowy Jork, 316-327.
  • Wilmes P., Bond P. L., 2006. Metaproteomics: studying functional gene expression in microbial ecosystems. Trend Microbiol. 14, 92-97.
  • Zammit G., Sánchez-Moral S., Albertano P., 2011. Bacterially mediated mineralization processes lead to biodeterioration of artworks in Maltese catacombs. Sci. Total Environ. 409, 2773-2782.
  • Zotti M., Ferroni A., Calvini P., 2008. Microfungal biodeterioration of historic paper: preliminary FTIR and microbiological analysis. Int. Biodeter. Biodegrad. 62, 186-194.
  • Zotti M., Ferroni A., Calvini P., 2011. Mycological and FTIR analysis of biotic foxing on paper substrates. Int. Biodeter. Biodegrad. 65, 569-578.
  • Zyska B., 2001. Budynki stare i nowe. [W:] Katastrofy, awarie i zagrożenia mikrobiologiczne w przemyśle i budownictwie. Zyska B. (red.). Wydawnictwo Politechniki Łódzkiej, Łódź, 132-194.
  • Zyska B., 2005. Biologia drobnosutrojów. [W:] Mikrobiologia materiałów. Zyska B., Żakowska Z. (red.). Wydawnictwo Politechniki Łódzkiej, Łódź, 15-88.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv64p57kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.