Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 4 | 517-524

Article title

Związek pomiędzy poziomem heterozygotyczności a dostosowaniem osobnika.

Content

Title variants

EN
Heterozygosity-fitness correlations.

Languages of publication

PL EN

Abstracts

PL
Zależności pomiędzy heterozygotycznością a dostosowaniem osobników, pomimo iż są badane już ponad 30 lat, ciągle stanowią przedmiot wielu dyskusji. Testowanie hipotezy o związkach heterozygotyczności z dostosowaniem opiera się na dwóch podstawowych założeniach: po pierwsze, poziom heterozygotyczności na przestrzeni genomu może być wykorzystany, jako miara stopnia kojarzeń w pokrewieństwie; po drugie, heterozygotyczność osobnika ma wpływ na jego dostosowanie. Związki heterozygotyczności z dostosowaniem tłumaczone się przy pomocy trzech kolejnych hipotez. Hipoteza efektu ogólnego zakłada, że heterozygotyczność badana w wielu loci odzwierciedla heterozygotyczność na poziomie całego genomu. Hipoteza efektu bezpośredniego zakłada przewagę heterozygoty wynikającą z jej względnej funkcjonalnej dominacji nad homozygotą. Hipoteza efektu lokalnego tłumaczy związek pomiędzy heterozygotycznością i dostosowaniem, jako rezultat fizycznego sprzężenia genów podlegających doborowi naturalnemu z neutralnymi markerami molekularnymi.
EN
Though heterozygosity-fitness correlations have been studied since more than three decades they are still a subject of discussions. Two assumptions for testing heterozygosity-fitness correlations are crucial: firstly, the heterozygosity across genome can be used as a measure of inbreeding; secondly, individual heterozygosity is correlated with fitness. In theoretical background, three hypotheses are suggested: general effect, direct effect and local effect. The general effect hypothesis suggests that heterozygosity in markers reflects heterozygosity at genome-wide loci. The direct effect hypothesis elucidates heterozygote advantage as a result of functional overdominance in comparison with homozygote. The local effect hypothesis explains heterozygosity-fitness correlation as a result of physical linkage between neutral molecular markers and closely linked gene fitness loci.

Keywords

Journal

Year

Volume

63

Issue

4

Pages

517-524

Physical description

Dates

published
2014

Contributors

  • Muzeum i Instytut Zoologii PAN, Wilcza 64, 00-679 Warszawa, Polska

References

  • Bouzat J. L., Johnson J. A., Toepfer J. E., Simpson S. A., Esker T. L., Westemeier R. L., 2009. Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv. Genet. 10, 191-201.
  • Chapman J. R., Sheldon B. C., 2011. Heterozygosity is unrelated to adult fitness measures in a large, noninbred population of great tits (Parus major). J. Evol. Biol. 24, 1715-1726.
  • Chapman J. R., Nakagawa S., Coltman D. W., Slate J., Sheldon B. C., 2009. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol. Ecol. 18, 2746-2765.
  • Coltman D. W., Slate J., 2003. Microsatellite measures of inbreeding: a meta-analysis. Evolution 57, 971-983.
  • Crochet P. A., 2000. Genetic structure of avian populations - allozymes revisited. Mol. Ecol. 9, 1463-1469.
  • Dakin E. E., Avise J. C., 2004. Microsatellite null alleles in parentage analysis. Heredity 93, 504-509.
  • David P., 1998. Heterozygosity-fitness correlations: new perspectives on old problems. Heredity 80, 531-537.
  • Dewoody Y. D., Dewoody J. A., 2005. On the estimation of genome-wide heterozygosity using molecular markers. J. Hered. 96, 85-88.
  • Forstmeier W., Schielzeth H., Mueller J. C., Ellegren H., Kempenaers B., 2012. Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Mol. Ecol. 21, 3237-3249.
  • Freeland J. R., 2008. Ekologia molekularna. Wydawnictwo Naukowe PWN, Warszawa.
  • Gibbs H. L., Chiucchi J. E., 2012. Inbreeding, body condition, and heterozygosity-fitness correlations in isolated populations of the endangered eastern massasauga rattlesnake (Sistrurus c. catenatus). Conserv. Genet. 13, 1133-1143.
  • Grueber C. E., Wallis G. P., Jamieson I. G., 2008. Heterozygosity-fitness correlations and their relevance to studies on inbreeding depression in threatened species. Mol. Ecol. 17, 3978-3984.
  • Hansson B., Westerberg L., 2002. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11, 2467-2474.
  • Hansson B., Bensch S., Hasselquist D., Akesson M., 2001. Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc. Royal Soc. B 268, 1287-1291.
  • Hansson B., Westerdahl H., Hasselquist D., Akesson M., Bensch S., 2004. Does linkage disequilibrium generate heterozygosity-fitness correlations in great reed warblers? Evolution 58, 870-879.
  • Hoffman J. I., Forcada J., Amos W., 2010. Exploring the mechanisms underlying a heterozygosity-fitness correlation for canine size in the Antarctic fur seal Arctocephalus gazella. J. Hered. 101, 539-552.
  • Houle D., 1989. Allozyme-associated heterosis in Drosophila melanogaster. Genetics 123, 789-801.
  • Jourdan-Pineau H., Folly J., Crochet P. A., David P., 2012. Testing the influence of family structure and outbreeding depression on heterozygosity-fitness correlations in small populations. Evolution 66, 3624-3631.
  • Keller L. F., Waller D. M., 2002. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230-241.
  • Klauke N., Segelbacher G., Schaefer H. M., 2013. Reproductive success depends on the quality of helpers in the endangered, cooperative El Oro parakeet (Pyrrhura orcesi). Mol. Ecol. 22, 2011-2027.
  • Kretzmann M., Mentzer L., DiGiovanni R., Leslie M. S., Amato G., 2006. Microsatellite diversity and fitness in stranded juvenile harp seals (Phoca groenlandica). J. Hered. 97, 555-560.
  • Kruuk L. E. B., Hill W. G., 2008. Introduction. Evolutionary dynamics of wild populations: the use of long-term pedigree data. Proc. Royal Soc. B 275, 593-596.
  • Krzanowska H., Łomnicki A., Rafiński J., Szarski H., Szymura J. M., 2002. Zarys mechanizmów Ewolucji. Wydawnictwo Naukowe PWN, Warszawa.
  • Laine V. N., Herczeg G., Shikano T., Primmer C. R., 2012. Heterozygosity-behaviour correlations in nine-spined stickleback (Pungitius pungitius) populations: contrasting effects at random and functional loci. Mol. Ecol. 21, 4872-4884.
  • Lynch M., Walsh B., 1998. Genetics and analysis of quantitative traits. Sinauer, Sunderland, MA.
  • Łomnicki A., 2012. Ekologia ewolucyjna. Wydawnictwo Naukowe PWN, Warszawa.
  • Malo A. F., Coulson T., 2009. Heterozygosity-fitness correlations and assiciative overdominance: new detection method and proof of principle in the Iberian wild boar. Mol. Ecol. 18, 2741-2747.
  • Markert J. A, Grant P. R., Grant B. R., Keller L. F., Coombs J. L., Petren K., 2004. Neutral locus heterozygosity, inbreeding, and survival in Darwin's ground finches (Geospiza fortis and G. scandens). Heredity 92, 306-315.
  • Monceau K., Wattier R., Dechaume-Moncharmont F. X., Dubreuil C., Cézilly F., 2013. Heterozygosity-fitness correlations in adult and juvenile Zenaida Dove, Zenaida aurita. J. Hered. 104, 47-56.
  • Olano-Marin J., Mueller J. C., Kempenaers B., 2011. Correlations between heterozygosity and reproductive success in the blue tit (Cyanistes caeruleus): an analysis of inbreeding and single locus effects. Evolution 65, 3175-3194.
  • Pemberton J., 2004. Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol. Evol. 19, 613-615.
  • Pérez H. M., Brokordt K. B., Tremblay R., Guderley H. E., 2011. Allozyme heterozygosity and escape response performance of the scallops, Argopecten purpuratus and Placopecten magellanicus. Marine Biol. 158, 1903-1913.
  • Pujol B., David P., McKey D., 2005. Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol. Lett. 8, 138-147.
  • Pulliam H. R., 1988. Sources, sinks, and population regulation. Am. Natural. 132, 652-661.
  • Ruiz-López M. J., Gañan N., Godoy J. A., Del Olmo A., Garde J., Espeso G., Vargas A., Martinez F., Roldan E. R., Gomandio M., 2012. Heterozygosity-fitness correlations and inbreeding depression in two critically endangered mammals. Conserv. Biol. 26, 1121-1129.
  • Saccheri I., Kuussaari M., Kankare M., Vikman P., Fortelius W., Hanski I., 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491-494.
  • Schlötterer C., 1998. Genome evolution: are microsatellites really simple sequences? Curr. Biol. 8, 132-134.
  • Seddon N., Amos W., Mulder R. A, Tobias J. A., 2004. Male heterozygosity predicts territory size, song structure and reproductive success in a cooperatively breeding bird. Proc. Royal Soc. B 271, 1823-1829.
  • Selkoe K. A, Toonen R. J., 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615-629.
  • Selonen V., Hanski I., 2010. Condition-dependent, phenotype-dependent and genetic-dependent factors in the natal dispersal of a solitary rodent. J. Animal Ecol. 79, 1093-1100.
  • Slate J., Pemberton J. M., 2002. Comparing molecular measures for detecting inbreeding depression. J. Evol. Biol. 15, 20-31.
  • Szulkin M., Bierne N., David P., 2010. Heterozygosity-fitness correlations: a time for reappraisal. Evolution 64, 1202-1217.
  • Szulkin M., David P., 2011. Negative heterozygosity - fitness correlations observed with microsatellites located in functional areas of the genome. Mol. Ecol. 20, 3949-3952.
  • Voegeli B., Saladin V., Wegmann M., Richner H., 2012. Parasites as mediators of heterozygosity-fitness correlations in the Great Tit (Parus major). J. Evol. Biol. 25, 584-590.
  • Vorburger C., 2005. Positive genetic correlations among major life-history traits related to ecological success in the aphid Myzus persicae. Evolution 59, 1006-1105.
  • Watt W. B., 1977. Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of Colias butterflies: biochemical and population aspects. Genetics 87, 177-194.
  • Wattier R., Engel C.R., Saumitou-Laprade P., Valero M., 1998. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol. Ecol. 7, 1569-1573.
  • Zagalska-Neubauer M., Dubiec A., 2007. Techniki i markery molekularne w badaniach zmienności genetycznej ptaków. Notatki Ornitologiczne 48, 193-206.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p517kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.