Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 3 | 443-453

Article title

Rośliny hiperakumulujące metale

Content

Title variants

EN
Heavy metals hyperaccumulating plants

Languages of publication

PL EN

Abstracts

PL
Rośliny hiperakumulujące metale są interesujące, gdyż nie tylko tolerują bardzo duże ilości metali w glebie, ale gromadzą je w swych nadziemnych tkankach. Ilości te przekraczają poziomy uznane za toksyczne dla większości organizmów. W artykule, w oparciu o przegląd publikacji, głównie z ostatnich 10 lat, pokazano przykłady gatunków hiperakumulujących różne metale, a reprezentujących różne grupy taksonomiczne, formy morfologiczne i różne zasięgi geograficzne. Przedstawiono dyskusję nad kryteriami określającymi hiperakumulację (m.in. ilość metalu w roślinie, wydajność akumulacji i translokacji), które, mimo już kilkudziesięciu lat badań nad hiperakumulacją, nadal wymagają uściśleń. Opisano hipotezy dotyczące przyczyn powstania hiperakumulacji i korzyści dla roślin z niej płynących. Skupiono się na hipotezach dotyczących allelopatii i obrony przeciwko naturalnym wrogom. Pokazano, nadal nieliczne, ekologiczne badania skierowane na poznanie konsekwencji istnienia hiperakumulatorów w ekosystemie.
EN
Hyperaccumulators are an interesting group of plants which manages to survive under extreme environmental conditions. They tolerate high concentrations of heavy metals in soils and accumulate them in aboveground tissues. Thereby, the accumulated amounts may reach levels which are highly toxic for other organisms. In this paper, I present a review of recent literature focusing on examples of species which accumulate various metals and metalloids. The respective species represent various taxonomic and morphological groups of plants originating from a variety of geographical locations. The criteria of hyperaccumulation (i.e. metal concentrations in aboveground organs, the efficiency of accumulation and translocation), as well as hypotheses about evolution of accumulation (elemental allelopathy, elemental defense) are discussed. Furthermore, I summarize the effects of hyperaccumulators' presence on ecosystems based on results of a small existing set of ecological studies.

Keywords

Journal

Year

Volume

63

Issue

3

Pages

443-453

Physical description

Dates

published
2014

Contributors

  • Instytut Botaniki im. W. Szafera PAN, Lubicz 46, 31-512 Kraków, Polska

References

  • Aerts R., Chapin III F. S. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30, 1-67.
  • Aboudrar W., Schwartz C., Benizri E., Morel J. L., Boularbach A., 2007. Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Int. J. Phytoremed. 9, 41-52.
  • Aford E. R., Pilon-Smits A. H., Paschke M. W., 2010. Metallophytes - a view from rhizosphere. Plant Soil 337, 33-50.
  • Altinözlü H., Karagöz A., Polat T., Ünver I., 2012. Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J. Bot. 36, 269-280.
  • Anderson C. W. N., Brooks R. R., Chiarucci A., LaCoste C. J., Leblanc M., Robinson B. H., Simack R., Stewart R. B., 1999. Phytomining for nickel, thallium and gold. J. Geochem. Explor. 67, 401-415.
  • Appenroth K.-J., 2010. Definition of 'heavy metals' and their role in biological systems. [W:] Soil heavy metals. Soil Biology. Tom 19. Sherameti I., Varma A. (red.). Springer Verlag, Berlin Heidelberg, 19-29.
  • Assunção A. G. L., Schat H., Aarts M. A. G., 2003. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol.159, 351-360.
  • Baker A. J. M., Brooks R. R., 1989. Terrestrial higher plants which hyper accumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81-126.
  • Baker A. J. M., Walker P. L., 1990. Ecophysiology of metal uptake by tolerant plants. [W:] Heavy metal tolerance in plants: evolutionary aspects. Shaw A. J. (red.). CRC Press, Boca Raton, 155-177.
  • Baker A. J. M., Whiting S. N., 2002. Search of the Holy Grail - a further step in understanding metal hyperaccumulation? New Phytol. 155, 1-4.
  • Baker A. J. M., McGrath S. P., Reeves R. D., Smith J. A. C., 2000. Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. [W:] Phytoremediation of contaminated soil and water. Terry N., Bañuelos G., Vangronsveld J. (red.). Lewis Publishers, Boca Raton, 85-107.
  • Baker A. J. M., Ernst W. H. O., van der Ent A., Malaisse F., Ginocchio R., 2010. Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. [W:] Ecology of industrial pollution. Batty L. C., Hallberg K. B. (red.). Cambridge University Press, British Ecological Society, Cambridge, 7-40.
  • Barceló J., Poschenrieder C., 2011. Hyperaccumulation of trace elements: from uptake and tolerance mechanisms to litter decomposition; selenium as an example. Plant Soil 341, 31-35.
  • Barry S. A. S., Clark S. C., 1978. Problems of interpreting the relationship between the amounts of lead and zinc in plants and soil on metalliferous wastes. New Phytol. 81, 773-783.
  • Becerra-Castro C., Monterroso C., Garcia-Leston M., Prieto-Fernandez A., Acea M. J., Kidd P. S., 2009. Rhizosphere microbial densities and trace element tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum. Int. J. Phytoremed. 11, 525-541.
  • Boyd R. S., 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293, 153-176.
  • Boyd R. S., Martens S. N., 1998. Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am. J. Botan. 85, 259-265.
  • Boyd R. S., Jaffré T., 2001. Phytoenrichment of soil Ni concentration by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. South Afr. J. Sci. 97, 535-538.
  • Boyd R. S., Jaffré T., 2009. Elemental concentrations of eleven New Caledonian plant species from serpentine soils: Elemental correlations and leaf-age effects. Northeastern Natural. 16 (Special Issue 5), 93-110.
  • Boyd R. S., Wall M. A., Jaffré T., 2009. Do tropical nickel hyperaccumulators mobilize metals into epiphytes? A test using bryophytes from New Caledonia. Northeastern Natural. 16, 139-154.
  • Branquinho C., Serrano H. C., Pinto M. J., Martins-Loucao M. A., 2007. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ. Pollut. 146, 437-443.
  • Broadley M. B, White P. J., Hammond J. P., Zelko I., Lux A., 2007. Zinc in plants. New Phytol. 173, 677-702.
  • Chaney R. L., Angle L. S., Broadhurst C. L., Peters C. A., Tappero R. V., Sparks D. L., 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 36, 1429-1443.
  • Davis M. A., Pritchard S. G., Boyd R. S., Prior S. A., 2001. Developmental and induced responses of nickel-based and organic defences of the nickel-hyperaccumulating shrub, Psychotria douarrei. New Phytol. 150, 49-58.
  • Deram A., Petit D., 1997. Ecology of bioaccumulation in Arrhenatherum elatius L. (Poaceae) populations-applications of phytoremediation of zinc, lead and cadmium contaminated soils. J. Exp. Botan. 48 (Special Suppl.), 98.
  • Dinelli E., Lombini A., 1996. Metal distribution in plants growing on copper mine spoils in Northern Apennins, Italy: the evaluation of seasonal variations. Appl. Geochem. 11, 375-385.
  • Faucon M.-P., Shutcha M. N., Metres P., 2007. Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301, 29-36.
  • Fernando D., Woodrow I., Bakkaus E., Collins R., Baker A., Batianoff G., 2007. Variability of Mn hyperaccumulation in the Australia rainforest tree Gossia bidwilli (Myrtaceae). Plant Soil 293, 145-152.
  • Fijałkowski K., Kacprzak M., Grobelak A., Placek A., 2012. The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska 15, 81-92.
  • Francesconi K., Visoottiviseth P., Sridokchan W., Goessler W., 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 284, 27-35.
  • Freeman J. L., Quinn C. F., Lindblom S. D., Klamper E. M., Pilon-Smits E. A. H., 2009. Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am. J. Botan. 96, 1075-1085.
  • Galeas M. L., Zhang L. H., Freeman J. L., Wegner M., Pilon-Smits E. A. H., 2007. Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol. 173, 517-525.
  • Garg N., Singla P., 2011. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ. Chem. Lett. 9, 303-321.
  • Gonzaga M. I. S., Ma L. Q., Santos J. A. G., 2007. Effects of plant age on arsenic hyperaccumulation by Pteris vittata L. Water Air Soil Pollut. 186, 289-295.
  • Grandcolas P., Murienne J., Robillard T., Desutter-Grandcolas L., Jourdan H., Grodzińska K., Szarek-Łukaszewska G. 2009. Heavy metal vegetation in the Olkusz region (southern Poland) - preliminary studies. Polish Botani. J. 54, 105-112.
  • Gratão P. L., Prasad M. N. V., Cardoso P. F., Lea P. J., Azevedo R. A., 2005. Phytoremediation: green technology for the clean up toxic metals in the environment. Brazyl. J. Plant Physiol. 17, 53-64.
  • Kabata-Pendias A., Pendias H., 1999. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa.
  • Kazakou E., Dimitrakopoulos P. G., Baker A. J. M., Reeves R. D., Troumbis A. Y., 2008. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol. Rev. 83, 495-508.
  • Kidd P., Barcelo J., Bernal M. P., Navari-Izzo F., Poschenrieder C., Shilev S., Clemente R., Monteroso C., 2009. Trace element behavior at the root-soil interface: implications in phytoremediation. Environ. Exp. Botan. 67, 243-259.
  • Krämer U., 2010. Metal hyperaccumulation in plants. Ann. Rev. Plant Biol. 61, 517-534.
  • Lane T. W., Morel F. F. M., 2000. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA 97, 4627-4631.
  • Laskowski R., Migula P., 2004. Ekotoksykologia. Od komórki do ekosystemu. PWRiL, Warszawa.
  • Lombi E., Zhao F. J., Dunham S. J., McGrath S. P., 2001. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919-1926.
  • Long X. X., Yang X. E., Ni W. Z., 2002. Current status and perspective on phytoremediation of heavy metal polluted soils. J. Appl. Ecol. 13, 757-762.
  • Ma L. Q., Komar K. M., Tu C., Zhang W. H., Cai Y., Kennelley E. D., 2001. A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409, 579-57.
  • Macnair M. R., 2003. The hyperaccumulation of metals by plants. Adv. Botan. Res. 40, 63-105.
  • Maestri E., Marmiroli M., Visioli G., Marmiroli N., 2010. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Envirom. Exp. Botan. 68, 1-13.
  • Martens S. M., Boyd R. S, 2002. The defensive role of Ni hyperaccumulation by plants: a field experiment. Am. J. Botan. 89, 998-1003.
  • Meers E., Samson R., Tack F. M. G., Ruttens A., Vandegehuchte M., Vangronsveld J., Verloo M. G., 2007. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Botan. 60, 385-396.
  • Mehdawi A. F. E, Pilon-Smits E. A. H., 2012. Ecological aspects of plant selenium hyperaccumulation. Plant Biol. 14, 1-10.
  • Mehdawi A. F. E, Qiunn C. F., Pilon-Smits E. A. H., 2011. Effects of selenium hyperaccumulation on plant-plant interaction: evidence for elemental allelopathy? New Phytol. 191, 120-131.
  • Memon A. R., Schröder P., 2009. Implications of metal accumulation mechanisms to phytoremediation. Environ. Sci. Pollut. Res. 16, 162-175.
  • Mengoni A., Schat H., Vangronsveld J., 2009. Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331, 5-16.
  • Milner M. J., Kochian L. V., 2008. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann. Botan. 102, 1-11.
  • Morris C., Grossl P. R., Call C. A., 2009. Elemental allelopathy: processes, progress, and pitfalls. Plant Ecol. 202, 1-11.
  • Palmgren M. G., Clemens C., Williams L. E., Kramer U., Borg S., Schjørring J. K., Sanders D., 2008. Zinc biofortication of cereals: problems and solutions. Trend. Plant Sci. 13, 464-473
  • Pollard A. J., Powell K. D., Harper F. A., Smith J. A. C., 2002. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci. 21, 539-566.
  • Poschenrieder C., Tolrà R., Barcelo J., 2006. Can metals defend plants against biotic stress? Trend. Plant Sci. 11, 288-295.
  • Prasad M. N. V., 1999. Heavy metal stress in plants. Springer, Berlin, Heidelberg, New York, Honk Kong, London, Milan, Paris, Tokyo.
  • Proctor J., 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect. Plant Ecol. Evolut. System. 6, 105-124.
  • Quinn C. F., Wyant K. A., Wangeline A. L., Shulman J., Galeas M. L., Valdez J. R., Self J. R., Paschke M. W., Pilon-Smits E. A. H., 2011. Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat-evidence for specialist decomposers? Plant Soil 341, 51-61.
  • Rascio N., Navari-Izzo F., 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180, 169-181.
  • Reeves R. D., 2006. Hyperaccumulation of trace elements by plants. [W:] Phytoremediation of Metal-Contaminated Soils. Morel J.-L., Echevarria G., Goncharova N. (red.). Springer, Netherlands, 25-52.
  • Reeves R. D., Baker A. J. M., 2000. Metal-accumulating plants. [W:] Phytoremediation of toxic metals: using plants to clean up the environment. Raskin I., Ensley B. D. (red.). John Wiley and Sons, New York, 193-229.
  • Reeves R. D., Baker A. J. M., Becquer T., Echevarria G., Miranda Z. J. G., 2007. The flora and biogeochemistry of the ultramac soils of Gois state, Brazil. Plant Soil 293, 7-119.
  • Reeves R. D., Baker A. J. M., Borhidi A., Berazain R., 1999. Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Botan. 83, 29-38.
  • Robinson B. H., Lombi E., Zhao F. J., McGrath S. P., 2003. Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol. 158, 279-285.
  • Rotkittikhun R., Kruatrachue M., Chaiyarat R., Ngernsansaruay C., Pokethitiyook P., Paijitprapaporn A., Baker A. J. M., 2006. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ. Pollut. 144, 681-688.
  • Sagner S., Kneer R., Wanner G., Cosson J. P., Deus-Neumann B., Zenk M. H., 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47, 339-347.
  • Sarma H., 2011. Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4, 118-138.
  • Severne B. C., 1974. Nickel accumulation by Hybanthus oribundus. Nature 248, 807-808.
  • Shah K., Nongkynrih J. M., 2007. Metal hyperaccumulation and bioremediation. Biologia Plantarum 51, 618-634.
  • Sharma N. C., Gardea-Torresday J. L., Parson Sahi S. V., 2004. Chemical speciation of lead in Sesbania drumondii. Environ. Toxicol. Chem. 23, 2068-2073.
  • Shaw A. J., 1994. Adaptation to metals in widespread and endemic plants. Environ. Health Perspect. 102 (Suppl. 12), 105-108.
  • Tang Y.-T., Qiu R.-L, Zenga X.-W., Yinga R.-R., Yua F.-M., Zhou X.-Y., 2009. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exp. Botan. 66, 126-134.
  • Verbruggen N., Hermans C., Schat H., 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181, 759-776.
  • Violante A., Cozzolino V., Perelomo L., Caporale A. G., Pigna M. P., 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutrit. 10, 268-292.
  • Whiting S. N., Reeves R. D., Richards D., Johnson M. S., Cooke J. A., Malaisse F., Paton A., Smith J. A. C., Angle J. S., Chaney R. L., Ginocchio R., Jaffré T., Johns R., McIntyre T., Purvis O. W., Salt D. E., Schat H., Zhao F. J., Baker A. J. M., 2003. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restorat. Ecol. 12, 106-116.
  • Yang X., Feng Y., He Z., Stoffella P. J., 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Medi. Biol. 18, 339-353.
  • Yanqun Z., Yuan L., Jianjun T. C., Haiyan C., Li Q., Schvartz C., 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ. Internat. 31, 55-762.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p443kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.