Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 4 | 635-646

Article title

Menu roślin mięsożernych

Content

Title variants

EN
Menu of carnivorous plants.

Languages of publication

PL EN

Abstracts

PL
Rośliny mięsożerne to organizmy autotroficzne wabiące i chwytające zwierzęta za pomocą specyficznych liści pułapkowych, można więc powiedzieć, że to rośliny odżywiające się pokarmem zwierzęcym. Mięsożerność w świecie roślin stanowi ciekawy przykład zdolności adaptacyjnych. Brak łatwo dostępnych składników mineralnych w środowisku naturalnym spowodował, że w toku ewolucji rośliny te wykształciły szereg mechanizmów umożliwiających im zdobywanie pierwiastków biogennych w sposób alternatywny do pobierania ich z roztworu glebowego. Wyniki badań prowadzonych od ponad 100 lat wskazują, że rośliny mięsożerne absorbują z ciał złapanych ofiar nie tylko azot, ale również m.in. fosfor i węgiel. Przyswajanie składników mineralnych jest możliwe dzięki obecności w pułapkach cieczy trawiennej, zawierającej enzymy odpowiadające za degradację białek, kwasów nukleinowych, cukrów, a nawet lipidów. Z uwagi na różny rodzaj pokarmu, sposób jego pozyskiwania i dalszej obróbki, można wśród roślin mięsożernych wyróżnić rośliny mięsożerne sensu stricto, pseudomięsożerne i rośliny detrytusożerne/koprofagi. W niniejszej pracy omówiono zagadnienia mineralnego odżywiania roślin mięsożernych, ze szczególnym uwzględnieniem preferowanej przez nie diety.
EN
Carnivory is a interesting example of plant adaptation to the environment deprived in mineral nutrients, especially nitrogen. Carnivorous plants derive some or most of their nutrients from trapping and consuming animals (mainly insects), instead of taking them from the soil. The results of experiments started in the past (even more than 100 years ago) on menu of carnivorous plants demonstrated that not only nitrogen but also phosphorous or carbon may be absorbed from trapped victims. Carnivorous plants are subdivided into those with passive traps and those with active traps. For some of these traps the actual method of insect decomposition involves digestive enzymes produced by the plant and bacterial decay within the trap. The composition of digestive fluid is still controversial, although activities of typical enzymes that can hydrolyze carbohydrates, nucleic acids, proteins and even lipids were found in the solution. Depending on the manner of nutrition e.g. a variety of victims, the group of carnivorous plants may be divided into carnivorous sensu stricto, pseudocarnivores and detritivores/coprophages. The aim of this review was to clarify current knowledge on mineral nutrition of carnivorous plants in relation to their favor diet.

Keywords

Journal

Year

Volume

61

Issue

4

Pages

635-646

Physical description

Dates

published
2012

Contributors

  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Rolnictwa i Biologii Katedra Fizjologii Roślin Nowoursynowska 159, 02-776 Warszawa, Polska
author
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Rolnictwa i Biologii Katedra Fizjologii Roślin Nowoursynowska 159, 02-776 Warszawa, Polska
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Rolnictwa i Biologii Katedra Fizjologii Roślin Nowoursynowska 159, 02-776 Warszawa, Polska

References

  • Adamczyk B., Godlewski M., 2010. Różnorodność strategii pozyskiwania azotu przez rośliny. Kosmos 59, 211-222.
  • Adamec L., 1997. Mineral nutrition of carnivorous plants - a review. Bot. Rev. 63, 273-299.
  • Adamec L., 2002. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytol. 155, 89-100.
  • Adamec L., 2008a. Mineral nutrient relations in the aquatic carnivorous plant Utricularia australis and its investment in carnivory. Arch. Hydrobiol. 3, 175-183.
  • Adamec L., 2008b. Soil fertilization enhances growth of the carnivorous plant Genlisea violacea. Biologia 2, 201-203.
  • Adamec L., 2010. Mineral cost of carnivory in aquatic carnivorous plants. Flora 205, 618-621.
  • Adlassnig W., Peroutka M., Lambers H., Lichtscheidl I. K., 2005. The roots of carnivorous plants. Plant Soil 274,127-140.
  • Adlassnig W., Steinhauser G., Peroutka M., Musilek A., Sterba J. H., Lichtscheidl I. K., Bichler M., 2009. Expanding the menu for carnivorous plants: Uptake of potassium, iron and manganese by carnivorous pitcher plants. Appl. Radiat. Isotop. 67, 2117-2122.
  • Adlassnig W., Peroutka M., Lendl T., 2011. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities. Ann. Bot. 107, 181-194.
  • An C.-I., Fukusaki E., Kobayashi A., 2002a. Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 214, 661-667.
  • An C.-I., Takekawa S., Okazawa A., Fukusaki E., Kobayashi A., 2002b. Degradation of a peptide in pitcher fluid of the carnivorous plant Nepenthes alata Blanco. Planta 215, 472-477.
  • Baxter I., 2009. Ionomics: studying the social network of mineral nutrients. Curr. Opin. Plant Biol. 12, 381-386.
  • Brewer J. S., Baker D. J., Nero A. S., Patterson A. L., Roberts R. S, Turner L. M., 2011. Carnivory in plants as a beneficial trait in wetlands. Aquat. Bot. 94, 62-70.
  • Byczkowski B., Macioszek V. K., Kononowicz A. K., 2009. Roślinne białka PR w odpowiedzi obronnej na atak grzybów neurotroficznych. Post. Biol. Kom. 36, 121-134.
  • Clarke C. M., Bauer U., Lee C. C., Tuen A., Rembold K., Moran J. A., 2009. Tree shrew lavatories: a novel nitrogen sequestration strategy in a tropical pitcher plant. Biol. Lett 5, 632-635.
  • Clarke C., Moran J. A., Lee C. C., 2011. Nepenthes baramensis (Nepenthaceae) - a new species from north-western Borneo. Blumea 56, 229-233.
  • Darwin C., 1875. Insectivorous plants. John Murray, London.
  • Ellison A. M., 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol. 8, 740-747.
  • Ellison A. M., Farnsworth E. J., 2005. The cost of carnivory for Darlingtonia californica (Sarraceniaceae): evidence from relationships among leaf traits. Am. J. Bot. 92, 1085-1093.
  • Ellison A. M., Gotelli N. J., 2009. Energetics and the evolution of carnivorous plants - Darwin's 'most wonderful plants in the world'. J. Exp. Bot. 60, 19-42.
  • Gojon A., Nacry P., Davidian J.-C., 2009. Root uptake regulation: a central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 12, 328-338.
  • Hanslin H. M., Karlsson P. S., 1996. Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species. Oecologia 106, 370-375.
  • Jentsch J., 1972. Enzymes from carnivorous plants (Nepenthes). FEBS Lett. 3, 273-276.
  • Jobson R.W., Morris E.C., Burgin S., 2000. Carnivory and nitrogen supply affect the growth of the bladderwort Utricularia uliginosa. Aust. J. Bot. 48, 549-560.
  • Jurgens A., El-Sayed A. M., Suckling D. M., 2009. Do carnivorous plants use volatiles for attracting prey insects? Functional Ecol. 23, 875-887.
  • Koopman M. M., Fuselier D. M., Hird S., Carstens B. C., 2010. The carnivorous pale pitcher plant harbors diverse, distinct and time-dependent bacterial communities. Appl. Environ. Microbiol. 76, 1851-1860.
  • Krouk G., Crawford N. M., Coruzzi G. M, Tsay Y.-F., 2010. Nitrate signaling: adaptation to fluctuating environments. Curr. Opin. Plant Biol. 13, 266-273.
  • Król E., Płachno B. J., Adamec L., Stolarz M., Dziubińska M., Trębacz K., 2012. Quite a few reasons for calling carnivores 'the most wonderful plants in the world'. Ann. Bot. 109, 47-64.
  • Libantova J., Kamarainen T., Moravcikova J., Matusikova I., Salaj J., 2009. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.). Mol. Biol. Rep. 36, 851-856.
  • Maathuis F. J. M., 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250-258.
  • Mithöfer A., 2011. Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72, 1678-1682.
  • Moran J. A., Clarke C. M., Hawkins B. J., 2003. From carnivore to detritivore ? Isotopic evidence for leaf litter utilization by the tropical pitcher plant Nepenthes ampullaria. Int. J. Plant Sci. 164, 635-639.
  • Moran J. A., Hawkins B. J., Gowen B. E., Robbins S. L., 2010. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies. J. Exp. Bot. 61, 1365-1374.
  • Morohoshi T., Oikawa M., Sato S., Kikuchi N., Kato N., Ikeda T., 2011. Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. J. Biosci. Bioeng. 112, 3812-3818.
  • Okabe T., Iwakiri Y., Mori H., Ogawa T., Ohyama T., 2005. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plant Drosera adelae. FEBS Lett. 579, 5729-5733.
  • Pavlovič A., Slováková L., Šantrůček J., 2011. Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria. Plant Cell Environ. 34, 1865-1873.
  • Peroutka M., Adlassnig W., Volgger M., Lendl T., Url W. G., Lichtscheidl I. K., 2008. Utricularia: a vegetarian carnivorous plant ? Algae as prey of bladderwort in oligotrophic bogs. Plant Ecol. 199, 153-162.
  • Płachno B. J., Adamec L., Lichtscheidl I. K., Peroutka M., Adlassnig W., Vrba J., 2006. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol. 8, 813-820.
  • Płachno B. J., Adamec L., Huet H., 2009. Mineral nutrientnt uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory. Ann. Bot. 104, 649-654.
  • Podbielkowski Z., Sudnik-Wójcikowska B., 2003. Rośliny mięsożerne - zwane też owadożernymi. Multico Oficyna Wydawnicza, Warszawa.
  • Rentsch D., Schmidt S., Tegeder M., 2007. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 581, 2281-228.
  • Rottloff S., Stieber R., Maischak H., Turini F. G., Heubl G., Mithöfer A., 2011. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J. Exp. Bot. 62, 4639-4647.
  • Schulze W., Schulze E. D., Pate J. S., Gillison A. N., 1997. The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. Oecologia 112, 464-471.
  • Sirová D., Adamec L., Vrba J., 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytol. 159, 669-675.
  • Sirová D., Borovec J., Šantrůčková H., Šantrůček J., Vrba J., Adamec L., 2010. Utricularia carnivory revisited: plants supply photosynthetic carbon to traps. J. Exp. Bot. 61, 99-103.
  • Sun J., Tong J., Chen D., Lin J., Liu X., Wang Y., 2010. Micro-tensile testing of the lightweight laminated structures of beetle elytra cuticle. Adv. Nat. Sci. 3, 225-234.
  • Tökés Z. A., Woon W. C., Chambers S. M., 1974. Digestive enzymes secreted by the carnivorous plant Nepenthes macferlanei L. Planta 119, 39-46.
  • Zamora R., Gomez J. M., Hodar J. A., 1997. Responses of a carnivorous plant to prey and inorganic nutrients in a Mediterranean environment. Oecologia 111, 443-451.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p635kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.