Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 60 | 3-4 | 445-457

Article title

Odpowiedź roślin na zranienie

Content

Title variants

EN
The response of plants to wounding

Languages of publication

PL EN

Abstracts

PL
Rośliny narażone są na różnorodne biotyczne i abiotyczne czynniki stresowe, które mogą powodować zranienie organizmu roślinnego. Odpowiedź rośliny na uszkodzenie mechaniczne może mieć charakter lokalny i/lub systemowy i obejmuje m. in. transdukcję sygnału o zranieniu, która prowadzi do ekspresji wielu różnych genów. W odpowiedzi roślin na zranienie główną rolę odgrywa kwas jasmonowy i jego pochodne. Ważną rolę przypisuje się również innym związkom chemicznym, takim jak: oligopeptyd systemina, oligosacharydy, lotne związki organiczne oraz fitohormony (np. kwas abscysynowy). W odpowiedzi na zranienie biorą również udział czynniki fizyczne, takie jak: fala hydrauliczna, czy impulsy elektryczne. Wymienione komponenty szlaków sygnałowych są kontrolowane i regulowane przez interakcje z innymi wewnątrzkomórkowymi kaskadami sygnałowymi u roślin, do których należy: odwracalna fosforylacja białek, zmiany wewnątrzkomórkowego stężenia jonów wapnia, regulowane przez kalmodulinę oraz produkcja reaktywnych form tlenu, takich jak anionorodnik ponadtlenkowy i nadtlenek wodoru. Niektóre substancje chemiczne zaangażowane w transdukcję sygnału o zranieniu funkcjonują również w szlakach sygnałowych jako rezultat działania czynników stresowych, innych niż uszkodzenie mechaniczne, np. w reakcji na infekcję przez patogeny. Zrozumienie mechanizmów, które są odpowiedzialne za reakcje na zranienie, zarówno w obrębie organizmu roślinnego jak i w kontekście oddziaływania roślina - środowisko, ma istotne znaczenie poznawcze i może mieć zastosowanie praktyczne, zwłaszcza w szeroko pojętej ochronie roślin.
EN
Plants during life are exposed to different abiotic and biotic stress factors. Both of them can induce wounding of a plant body. Responses to mechanical damage are local or/and systemic and hence involve the transduction of wound signals to activate the expression of various genes. In plant responses to wounding the central role plays jasmonic acid and its derivatives, but other compounds, including the oligopeptide systemin, oligosaccharides, volatile organic compounds and phytohormones e. g. abscisic acid are also important. Additionally, physical factors such as hydraulic pressure or electrical pulses, have also been proposed as a crucial factors involved in wound signaling. These components of signaling pathways are controlled in time and space by highly complex regulatory networks modulated by interactions with other signaling cascades in plants. They include reversible protein phosphorylation steps, calcium calmodulin-regulated events, and production of reactive oxygen species such as superoxide anion radical and hydrogen peroxide. Indeed, some of these components involved in transducing of wound signals also function in signaling of other plant defence responses, mainly in pathogen responses, suggesting that cross-talk events may regulate temporal and spatial activation of different defences. Understanding the ways in which wound signaling pathways are coordinated individually and in the context of the plants environment is crucial in the application of this knowledge to plants crop protection strategies.

Keywords

Journal

Year

Volume

60

Issue

3-4

Pages

445-457

Physical description

Dates

published
2011

Contributors

  • Instytut Botaniki, Uniwersytet Jagielloński, Grodzka 52, 31-044 Kraków, Polska
  • Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Niezapominajek 21, 30-239 Kraków, Polska

References

  • Baldwin I. T., Kessler A., Halitschke R., 2002. Volatile signalling in plant-plant-herbivore interactions: what is real? Curr. Opin. Plant Biol. 5, 351-354.
  • Bostock R. M., 1999. Signal conflicts and synergies in induced resistances to multiple attackers. Physiol. Mol. Plant Patho. 55, 99-109.
  • Bostock R. M., Karban R., Thaler J. S., Weyman P. D., Gilchrist D., 2001. Signal interactions in induced resistance to pathogens and insect herbivores. Eur. J. Plant Pathol. 107, 103-111.
  • Bouquin T., Lasserre E., Pradier J., Pech J. C., Balagué C., 1997. Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways. Plant Mol. Biol. 35, 1029-1035.
  • Browse J., 2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60, 183-205.
  • Browse J., Howe G. A., 2008. New weapons and a rapid response against insect attack. Plant Physiol. 146, 832-838.
  • Chandru H. K., Kim E., Kuk Y., Cho K., Han O., 2003. Kinetics of wound-induced activation of antioxidative enzymes in Oryza sativa: differential activation at different growth stages. Plant Sci. 164, 935-941.
  • Cheong Y. H., Chang H. S., Gupta R., Wang X., Zhu T., Luan S., 2002. Transcriptional profiling, reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129, 661-677.
  • Comparot S. M., Graham C. M., Reid D. M., 2002. Methyl jasmonate elicits a differential antioxidant response in light- and dark-grown canola (Brassica napus) roots and shoots. Plant Growth Regul. 38, 21-30.
  • Constabel P. C., 1999. A suvery of herbivore-inducible defensive proteins and phytochemicals. [W:] Inducible plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. Agrawal A. A., Tuzun S., Bent E. (red.). American Phytopatological Society Press, Paul, MN, USA, 137-166.
  • de Bruxelles G. L., Roberts M. R., 2001. Signals regulating multiple responses to wounding and herbivores. Crit. Rev. Plant Sci. 20, 487-521.
  • Devoto A., Turner J. G., 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot. 92, 329-337.
  • Dicke M., Van Loon J. J., Soler R., 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 5, 317-324.
  • Dicke M., Van Poecke R. M. P., 2002. Signalling in plant-insect interactions: signal transduction in direct and indirect plant defence. [W:] Plant Signal Transduction. Scheel D., Wasternack C. (red.). Oxford University Press, 289-316.
  • Dombrowski J. E., 2003. Salt stress activation of wound-related genes in tomato plants. Plant Physiol. 132, 2098-2107.
  • Felton G. W., Korth K. L., 2000. Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant. Biol. 3, 309-314.
  • Felton G. W., Tumlinson J. H., 2008. Plant-insect dialogs: complex interactions at the plant-insect interface. Curr. Opin. Plant. Biol. 11, 457-463.
  • Ferry N., Edwards M. G., Gatehouse J. A., Gatehouse A. M. R., 2004. Plant-insect interactions: molecular approaches to insect resistance. Curr. Opin. Biotechnol. 15, 155-161.
  • Frankowski K., Świeżawska B., Wilmowicz E., Kęsy J., Kopcewicz J., 2009. Szlak sygnałowy kwasu jasmonowego - nowe informacje. Post. Biochem. 55, 337-341.
  • Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K., 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signalling networks. Curr. Opin. Plant Biol. 9, 436-442.
  • Garcês H., Durzan D., Pedroso M. C., 2001. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thalaina. Ann. Bot. 87, 567-574.
  • Gatehouse J. A., 2002. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156, 145-169.
  • Glauser G., Grata E., Dubugnon L., Rudaz S., Farmer E. E., Wolfender J. L., 2008. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J. Biol. Chem. 283, 16400-16407.
  • Ham J. H., Bent A., 2002. Recognition and defence signalling in plant/bacterial and fungal interactions. [W:] Plant Signal Transduction. Scheel D., Wasternack C. (red.). Oxford University Press, 198-225.
  • Heath M. C., 2000. Hypersensitive response-related death. Plant Mol. Biol. 44, 321-334.
  • Holopainen J. K., Gershenzon J., 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant. Sci. 15, 176-184.
  • Howe G. A., 2010. Ubiquitin ligase-coupled receptors extend their reach to jasmonate. Plant Physiol. 154, 471-474.
  • Kallenbach M., Alagna F., Baldwin I. T., Bonaventure G., 2010. Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in pathway. Plant Physiol. 152, 96-106.
  • Kazan K., Manners J. M., 2008. Jasmonate signaling: toward an integrated view. Plant Physiol. 146, 1459-1468.
  • Kessler A., Baldwin I. T., 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53, 299-328.
  • Koo A. J. K., Gao X., Jones A. D., Howe G. A., 2009. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 59, 974-986.
  • Koo A. J. K., Howe G. A., 2009. The wound hormone jasmonate. Phytochemistry 70, 1571-1580.
  • Laothawornkitkul J., Paul N. D., Vickers C. E., Possell M., Taylor J. E., Mullineaux P. M., Hewitt C. N., 2008. Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ. 31, 1410-1415.
  • León J., Rojo E., Sánchez-Serrano J. J., 2001. Wound signalling in plants. J. Exp. Bot. 52, 1-9.
  • Liu Y., Pan Q.-H., Yang H.-R., Liu Y.-Y, Huang W.-D., 2008. Relationship between H2O2 and jasmonic acid in pea leaf wounding response. Russ. J. Plant Physiol. 55, 765-775.
  • Loreto F., Barta C., Brilli F., Nogues I., 2006. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ. 29, 1820-1828.
  • Lüthje S., Böttger M., Döring O., 2000. Are plants stacked neutrophiles? Comparison of pathogen-induced oxidative burst in plants and mammals. Progr. Botan. 61, 187-222.
  • Maes K., Debergh P. C., 2003. Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell Tiss. Organ Cult. 75, 73-78.
  • Maes K, Vercammen J., Pham-Tuan H., Sandra P., Debergh P. C., 2001. Critical aspects for the reliable headspace analysis of plant cultivated in vitro. Phytochem. Anal. 12, 153-158.
  • Matsubayashi Y., Yang H., Sakagami Y., 2001. Peptide signals and their receptors in higher plants. Trends Plant Sci. 6, 573-577.
  • Metraux J.-P., Nawrath C., Genoud T., 2002. Systemic acquired resistance. Euphytica 124, 237-234.
  • Mueller M. J., 1997. Enzymes involved in jasmonic acid biosythesis. Physiol. Plant 100, 653-663.
  • Narvaez-Vasquez J., Ryan C. A., 2004. The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218, 360-369.
  • Norman C., Vidal S., Paiva E. T., 1999. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora. Mol. Plant-Microbe Interact. 12, 640-644.
  • Nürnberger T., Scheel D., 2001. Signal transmission in the plant immune response. Trends Plant Sci. 6, 372-379.
  • O'Donnell P. J., Calvert C., Atzorn R., Waternack C., Leyser H. M. O., Bowles D. J., 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274, 1914-1917.
  • Orozco-Cardenas M., Ryan C. A., 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96, 6553-6557.
  • Orozco-Cardenas M., Ryan C. A., 2002. Nitric oxide negatively modulates wound signalling in tomato plants. Plant Physiol. 130, 487-493.
  • Orozco-Cárdenas M.L., Narváez-Vásquez J., Ryan C. A., 2001. Hydrogen peroxide acts as a second messenger for the induction of defence genes in tomato plants in response to wounding, systemin and methyl jasmonate. Plant Cell 13, 179-191.
  • Paul N. D., Hatcher P. E., Taylor J. E., 2000. Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci. 5, 220-225.
  • Pearce G., Moura D. S., Stratmann J., Ryan C. A., 2001. Production of multiple plant hormones from a single polyprotein precursor. Nature 411, 817-820.
  • Pearce G., Ryan C. A., 2003. Systemic signaling in tomato plants for defense against herbivores. J. Biol. Chem. 278, 30044-30050.
  • Predieri S., Rapparini F., 2007. Terpene emission in tissue culture. Plant Cell Tiss. Organ Cult. 91, 87-95.
  • Preston C. A., Lewandowski C., Enyedi A. J., Baldwin I. T., 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209, 87-95.
  • Reymond P., Weber H., Damond M., Farmer E. E., 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12,707-719.
  • Rojo E., León J., Sanchez-Serrano J. J., 1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20, 135-142.
  • Ryan C. A., 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477, 112-121.
  • Ryan C. A., Pearce G., Scheer J., Moura D. S., 2002. Polypeptide hormones. Plant Cell 14 (Suppl.), 251-264.
  • Schaller F., 2001. Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J. Exp. Bot. 52, 11-23.
  • Schaller F., Weiler E. W., 2002. Wound- and mechanical signalling. [W:] Plant Signal Transduction. Scheel D., Wasternack C. (red.). Oxford University Press, 20-44.
  • Schilmiller A. L., Howe G. A., 2005. Systemic signalling in the wound response. Curr. Opin. Plant Biol. 8, 369-377.
  • Seo H. S., Song J. T., Cheong J. J., Lee Y. H., Lee Y. W., Hwang I., Lee J., Choi Y. D., 2001. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 98, 4788-4793.
  • Szczegielniak J., 2007. Szlaki przekazywania sygnału w reakcji roślin na zranienie. Post. Biochem. 53, 121-132.
  • Ślesak E., Ślesak M., Gabryś B., 2001. Effect of methyl jasmonate on hydroxamic acid content, protease activity, and bird cherry-oat aphid Rhopalosiphum padi (L.) probing behavior. J. Chem. Ecol. 27, 2529-2543.
  • Ślesak I., Ślesak H., Libik M., Miszalski Z., 2008. Antioxidant response system in the short-term post-wounding effect in Mesembryanthemum crystallinum leaves. J. Plant Physiol. 165, 127-137.
  • Thaler J. S., Stout M. J., Karban R., Duffey S., 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22, 1767-1781.
  • Turlings T. C. J., Ton J., 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9, 421-427.
  • Turner J. G., Ellis C., Devoto A., 2002. The jasmonate signal pathway. Plant Cell 14 (Suppl.), 153-164.
  • Unsicker S. B., Kunert G., Gershenzon J., 2009. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 12, 479-485.
  • Vercammen J., Pham-Tuan H., Sandra P., 2001. Automated dynamic sampling system for the on-line monitoring of biogenic emissions from living organisms. J. Chromatogr. A 930, 39-51.
  • Vickers C. E., Gershenzon J., Lerdau M. T., Loreto F., 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5, 283-290.
  • Walling L. L., 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19, 195-216.
  • Wang K. L.-C., Li H., Ecker J. R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14 (Suppl.), 131-151.
  • Weber H., 2002. Fatty acid-derived signals in plants. Trends Plant Sci. 7, 217-224.
  • Whitham S. A., Dinesh-Kumar S. P., 2002. Signalling in plant-virus interactions. [W:] Plant Signal Transduction. Scheel D., Wasternack C. (red.). Oxford University Press, 226-249.
  • Wilkinson S., Davies W. J., 2002. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25, 195-210.
  • Yang D. H., Hettenhausen Ch., Baldwin I. T., Wu J., 2011. BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory. J. Exp. Bot. 62, 641-652.
  • Zhang S., Klessig D. F., 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520-527.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv60p445kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.